Latent Dirichlet Allocation (LDA)是一个主题模型,能够对文本进行建模,得到文档的主题分布。但是LDA得到的每个主题是一个在词项上的多项分布,这个分布非常稀疏。为了更好地刻画语义连贯性,有研究者提出了Gaussian LDA,本文简单介绍该模型。
转载请注明出处:http://blog.csdn.net/u011414416/article/details/51188483
本文主要介绍ACL2015的以下工作:
Rajarshi Das, Manzil Zaheer, and Chris Dyer. 2015. Gaus- sian lda for topic models with word embeddings. In Proceedings of ACL 2015.
此外,还主要参考了Rickjin的《LDA数学八卦》
以及Parameter Estimation for text analysis这篇技术报告

本文深入探讨了Gaussian LDA在文本建模领域的应用,引用了Rajarshi Das等人的ACL2015论文以及Rickjin的《LDA数学八卦》,并参考了Parameter Estimation for text analysis的技术报告。
最低0.47元/天 解锁文章
941

被折叠的 条评论
为什么被折叠?



