关闭

House Robber

110人阅读 评论(0) 收藏 举报
分类:

DP

对于第i个状态(房子),有两种选择:偷(rob)、不偷(not rob)

递推公式为:
f(i)=max{f(i1)+vali,f(i2)+vali,robi1==0robi1==1f(i1),robnot rob

f(i)为动态规划表(DP表)(状态i下的最优解)
val为每间房子里的钱(val表)
rob为记录是否已经偷过,0表示没偷过,1表示偷了(is_robbed表)。

有了递推公式代码就很好写了

class Solution:
    # @param {integer[]} nums
    # @return {integer}
    def rob(self, nums):
        val=[0]+nums
        DP=[0]*(len(nums)+1)
        is_robbed=[0]*(len(nums)+1)
        for i in range(1,len(val)):
            if is_robbed[i-1]==0:
                f_rob=DP[i-1]+val[i]
            else:
                f_rob=DP[i-2]+val[i]
            f_no_rob=DP[i-1]
            if f_rob>f_no_rob:
                DP[i]=f_rob
                is_robbed[i]=1
            else:
                DP[i]=f_no_rob
                is_robbed[i]=0
        return DP[len(nums)]
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1531次
    • 积分:186
    • 等级:
    • 排名:千里之外
    • 原创:9篇
    • 转载:2篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档