[BZOJ2161]布娃娃(扫描线+线段树)

原创 2016年05月30日 21:51:49

题意:若干个点,对每个点求能覆盖住它的线段的权值的第k大。

强制在线的题做多了,作死写了个主席树套平衡树,两个log常数炸了,只得了40分暴力分。

正解显然扫描线+线段树,把每个线段拆成起点和终点,代表插入和删除,线段树维护第k大权值就好了。。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define erp(i,a,b) for(int i=a;i>=b;--i)
using namespace std;
const int MAXN = 100005;
const int mo = 19921228;
int N;
int P[MAXN], C[MAXN], L[MAXN], R[MAXN];
int dat[MAXN], dn;

void genarr(int*a)
{
	int add, first, mod, prod;
	scanf("%d%d%d%d", &add, &first, &mod, &prod);
	a[1] = first % mod;
	rep(i, 2, N) a[i] = (1ll*a[i-1]*prod+add+i)%mod;
}

struct doll {
	int t, c, tp, k; //tp=0:insert   tp=1:delete   tp=1:query.
	doll () {}
	doll (int q,int w,int e,int f) : t(q),c(w),tp(e),k(f){}
	bool operator < (const doll&b) const {
		if (t^b.t) return t < b.t;
		return tp < b.tp;
	}
} q[MAXN*3];
int qn;

#define lch(a) tr[a].lch
#define rch(a) tr[a].rch
struct Node {
	int lch, rch, cnt;
} tr[MAXN*4];
int ncnt, root;
void ins(int&x, int v, int l=1, int r=dn)
{
	if (!x) x = ++ncnt;
	tr[x].cnt ++;
	if (l==r) return;
	int mid = (l+r)>>1;
	if (v<=mid) ins(lch(x), v, l, mid);
	else ins(rch(x), v, mid+1, r);
}
void del(int x, int v, int l=1, int r=dn)
{
	tr[x].cnt --;
	if (l==r) return;
	int mid = (l+r)>>1;
	if (v<=mid) del(lch(x), v, l, mid);
	else del(rch(x), v, mid+1, r);
}
int getkth(int x, int k, int l=1, int r=dn)
{
	if (l==r) return l;
	int mid = (l+r)>>1;
	if (tr[rch(x)].cnt>=k) return getkth(rch(x), k, mid+1, r);
	return getkth(lch(x), k-tr[rch(x)].cnt, l, mid);
}

int solve()
{
	sort(q+1, q+qn+1);
	int ans = 0;
	rep(i, 1, qn)
	{
		if (q[i].tp==0) ins(root, q[i].c);
		else if (q[i].tp==1) del(root, q[i].c);
		else if (tr[root].cnt >= q[i].k) (ans+=dat[getkth(root, q[i].k)]%mo) %= mo;
	}
	return ans;
}

int main()
{
	//freopen("doll.in","r",stdin);
	//freopen("doll.out","w",stdout);
	scanf("%d", &N);
	genarr(P), genarr(C), genarr(L), genarr(R);
	rep(i, 1, N) dat[i] = C[i];
	sort(dat+1, dat+N+1);
	dn = unique(dat+1, dat+N+1)-dat-1;
	rep(i, 1, N) C[i] = lower_bound(dat+1, dat+dn+1, C[i])-dat;
	rep(i, 1, N)
	{
		if (L[i]>R[i]) swap(L[i], R[i]);
		q[++qn] = doll(L[i], C[i], 0, 0);
		q[++qn] = doll(P[i], 0, 2, i);
		q[++qn] = doll(R[i]+1, C[i], 1, 0);
	}
	int ans = solve();
	printf("%d\n", ans);
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

bzoj 2161: 布娃娃 (扫描线+线段树)

题目描述传送门题解把l[i],r[i]看成是l[i]处加入,r[i]+1处删除。 因为要查询的是第k大的问题,所以我们将c[i]离散化后建立权值线段树即可。代码#include #include #...

【BZOJ】【P2584】【Wc2012】【memory】【题解】【线段树+扫描线+拓扑排序】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2584 首先考虑第二问 显然只向一个方向移动一定有解 假设向上 显然构成了一个DAG图,...

BZOJ2951: [Poi2001]Goldmine 扫描线+线段树

2951: [Poi2001]Goldmine Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 42  Solved: 31 [Submit][S...
  • Oakley_
  • Oakley_
  • 2016年10月14日 08:36
  • 141

[BZOJ4422][Cerc2015]Cow Confinement(扫描线+线段树)

这篇题解ATP在APIO的时候就开始写写到现在终于写完了。。
  • FromATP
  • FromATP
  • 2017年05月28日 21:57
  • 270

Bzoj 4422: [Cerc2015]Cow Confinement(线段树+扫描线)

bzoj 4422: [Cerc2015]Cow Confinement 题目题目链接 Description一个10^6行10^6列的网格图,上面有一些牛、花和一些矩形围栏,围栏在格子的边界上,牛...

[BZOJ1645][Usaco2007 Open]City Horizon 城市地平线(扫描线+线段树)

要积极面对每一个变数,因为每个变数都可能是你新生活的开始。

bzoj 3958: [WF2011]Mummy Madness (扫描线+线段树)

题目描述传送门题解二分一个移动的时间。然后每个木乃伊和自己能到达的区域是一个正方形。 判断自己能到达的区域是否完全被木乃伊所能到达的区域覆盖即可。 有些细节需要注意: (1) 离散化的时候要插入...

BZOJ 4059 Cerc2012 Non-boring sequences 线段树+扫描线

题目大意:定义一个序列为【不无聊的】当且仅当这个序列的任意一个区间都存在一个数只出现过一次,给定一个序列,要求判断这个序列是否是【不无聊的】 定义lastilast_i表示第ii个元素上一次出现的位...
  • PoPoQQQ
  • PoPoQQQ
  • 2015年06月05日 18:28
  • 1178

BZOJ 1818 线段树+扫描线

思路: 可以把题目转化成 给你一些沿坐标轴方向的线段 让你求交点个数 然后就线段树+扫描线 搞一搞 (线段不包含断点 最后+n 这种方式 比线段包含断点+各种特判要好写得多)//By Si...

bzoj 1818: [Cqoi2010]内部白点 (扫描线+线段树)

题目描述传送门题目大意:无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点)。每秒钟,所有内部白点同时变黑,直到不存在内部白点为止。你的任务是统计最后网格...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[BZOJ2161]布娃娃(扫描线+线段树)
举报原因:
原因补充:

(最多只允许输入30个字)