关闭

[BZOJ2162]男生女生(二分图带权独立集+dp)

264人阅读 评论(0) 收藏 举报
分类:

题意:懒得写了,比较麻烦。

强行嵌套的题真没意思。。

开始我看见数据范围n=50,第一问求什么完全子图,我以为是个搜索减枝,然后第二问那个dp我想了想,列了几个方程发现不是很对,然后又没有部分分,我就弃疗了。。

其实想一想应该是想得出来的,主要是考试的时候写了第二题的很麻烦的做法,被折腾得没精力了,就没怎么想。。第一问其实很简单,二分图完全子图是P类的。我们求出这个二分图的补图,补图中的边就表示这两个点不能被同时选,于是就是最大点独立集了。由于要选出尽量多的男生,我们用最小割来做带权独立集即可,在S割中的男生和在T割中的女生都要选。

然后就是个DP。设f[a,b]表示a个男生b个女生中连k条边的方案(注意k是常数),可以看做在a*b的矩阵里放k个点,使得每行每列都有点。f[a,b]=C(a*b,k)-Σf[i,j]*C(a,i)*C(b,j)。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define erp(i,a,b) for(int i=a;i>=b;--i)
using namespace std;
const int inf = 0x3f3f3f3f;
const int mo = 19921228;
const int MAXN = 105;
void up(int&a, int b) { a+=b;if(a>=mo)a-=mo; }

int c[2505][2505], f[55][55];
void makecomb()
{
	c[0][0] = 1;
	rep(i, 1, 2500)
	{
		c[i][0]=c[i][i]=1;
		rep(j, 1, i) c[i][j] = (c[i-1][j-1]+c[i-1][j])%mo;
	}
}
int C(int n, int r)
{
	if (r>n||r<0) return 0;
	return c[n][r];
}

bool inS[105], inT[105];
struct Ed{ int to, nxt, c; };
struct FlowNet
{
	Ed e[100000];
	bool vis[MAXN];
	int ec, adj[MAXN], d[MAXN], vd[MAXN];
	int S, T, flow, vn;
	void init(int n, int s, int t)
	{
		rep(i, 1, n) adj[i] = -1;
		vn = n, S = s, T = t;
	}
	void adde(int a, int b, int c)
	{
		e[ec].to = b;
		e[ec].c = c;
		e[ec].nxt = adj[a];
		adj[a] = ec++;
		e[ec].to = a;
		e[ec].c = 0;
		e[ec].nxt = adj[b];
		adj[b] = ec++;
	}
	int aug(int u, int augco)
	{
		if (u==T) return augco;
		int delta, augc = augco, mind = vn-1;
		for (int i = adj[u], v; ~i; i=e[i].nxt)
		{
			v = e[i].to;
			if (e[i].c<=0) continue;
			if (d[u] == d[v]+1)
			{
				delta = aug(v, min(augc, e[i].c));
				e[i].c -= delta, e[i^1].c += delta;
				augc -= delta;
				if (d[S]>=vn) return augco-augc;
				if (!augc) break;
			}
			mind = min(mind, d[v]);
		}
		if (augc==augco)
		{
			if (!--vd[d[u]]) d[S] = vn;
			++vd[d[u] = mind+1];
		}
		return augco - augc;
	}
	int sap()
	{
		vd[0] = vn;
		flow = 0;
		while (d[S]<vn) flow+=aug(S, inf);
		return flow;
	}
	void dfsS(int u)
	{
		vis[u] = inS[u] = 1;
		for (int i=adj[u]; ~i; i=e[i].nxt)
			if (e[i].c>0&&!vis[e[i].to]) dfsS(e[i].to);
	}
	void dfsT(int u)
	{
		vis[u] = inT[u] = 1;
		for (int i=adj[u]; ~i; i=e[i].nxt)
			if (e[i^1].c>0&&!vis[e[i].to]) dfsT(e[i].to);
	}
	void getcut()
	{
		memset(vis,0,sizeof vis); dfsS(S);
		memset(vis, 0, sizeof vis); dfsT(T);
	}
} G;

int N, K, M, n, m;
bool love[55][55];
void solve()
{
	makecomb();
	printf("%d %d\n", n, m);
	rep(a, 1, n) rep(b, 1, m)
	{
		f[a][b] = C(a*b, K);
		rep(i, 1, a) rep(j, 1, b) if(i!=a||j!=b)
		{
			f[a][b] += mo-1ll*f[i][j]*C(a,i)%mo*C(b,j)%mo;
			f[a][b] %= mo;
		}
	}
	printf("%d\n", f[n][m]);
}

int main()
{
	freopen("boygirl.in","r",stdin);
	freopen("boygirl.out","w",stdout);
	int a, b;
	scanf("%d%d%d", &N, &K, &M);
	G.init(2*N+2, 2*N+1, 2*N+2);
	rep(i, 1, M) scanf("%d%d",&a,&b), love[a][b]=1;
	rep(i, 1, N) G.adde(G.S, i, 999), G.adde(N+i, G.T, 998);
	rep(i, 1, N) rep(j, 1, N) if (!love[i][j]) G.adde(i, N+j, inf);
	G.sap();
	G.getcut();
	rep(i, 1, N) if (inS[i]) ++n;
	rep(i, 1, N) if (inT[N+i]) ++m;
	solve();
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:45573次
    • 积分:1433
    • 等级:
    • 排名:千里之外
    • 原创:98篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条
    最新评论