关闭

[BZOJ3295][Cqoi2011]动态逆序对(分块重建)

267人阅读 评论(0) 收藏 举报
分类:

题意:一个排列,每次删除一个数,求每次删除后的逆序对的数量。

正确姿势请移步 http://blog.csdn.net/u011542204/article/details/50571409

将操作分成根号M段,然后每段内的操作按下标排序,计算它前面的比他小的和它后面的比他大的。有一个问题就是同一个块当中的没有被减掉,由于一个块内只有根号M个操作,暴力减掉即可。

如果要在线的话将那个排序变成主席树即可。

时间复杂度O(M*logM*sqrt(n)),空间O(n),适当地将块调大一点会快一点。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define erp(i,a,b) for(int i=a;i>=b;--i)
#define LL long long
using namespace std;
const int MAXN = 100005;
int a[MAXN], pos[MAXN], N, M, bsz, b[MAXN], cnt, c[MAXN], r;
inline void add(int i,int x) { for(;i<=N;i+=i&-i) c[i]+=x; }
inline int qsum(int i) { for(r=0;i;i^=i&-i) r+=c[i]; return r; }
LL val[MAXN];
struct qua{
	int p,id;
	bool operator<(const qua&b)const{return p<b.p;}
}q[MAXN];
int main()
{
	scanf("%d%d",&N,&M);
	rep(i,1,N) scanf("%d",a+i),pos[a[i]]=i;
	bsz = ceil(sqrt(M+0.5))+0.1; bsz<<=1;
	if (bsz>M) bsz = M;
	rep(i,1,M) scanf("%d",b+i);
	LL tot = 0;
	erp(j, N, 1) tot+=qsum(a[j]-1), add(a[j],1);
	for (int i=1, nex, p; i<=M; i+=bsz)
	{
		cnt = 0;
		nex = min(M, i+bsz-1);
		rep(j, i, nex) q[++cnt]=(qua){pos[b[j]],j};
		sort(q+1,q+cnt+1);
		p = 1;
		int num = 0;
		rep(j,0,N) c[j]=0;
		rep(j, 1, N)
		{
			if (p>cnt) break;
			if (a[j]<0) continue;
			if (j==q[p].p) val[q[p].id]+=num-qsum(a[j]), p++;
			add(a[j],1), num++;
		}
		p = cnt;
		rep(j,0,N) c[j]=0;
		erp(j, N, 1)
		{
			if (p<1) break;
			if (a[j]<0) continue;
			if (j==q[p].p) val[q[p].id]+=qsum(a[j]), p--;
			add(a[j],1);
		}
		rep(j, i, nex)
		{
			rep(k, i, j-1) if (pos[b[k]]<pos[b[j]]&&b[k]>b[j]||pos[b[k]]>pos[b[j]]&&b[k]<b[j]) val[j]--;
			printf("%lld\n", tot); tot -= val[j];
		}
		rep(j, i, nex) a[pos[b[j]]]=-1;
	}
	return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:45087次
    • 积分:1429
    • 等级:
    • 排名:千里之外
    • 原创:98篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条
    最新评论