关闭

排序算法(三)_计数排序、基数排序的Java实现

标签: 排序算法线性时间排序计数排序基数排序java实现
1081人阅读 评论(0) 收藏 举报
分类:

       继续排序相关的内容,上次聊了几个theta(nlgn)的比较型排序,今天聊一下线性时间theta(n)的排序算法。都比较简单,大部分内容来自<算法导论>公开课视频。两个算法分别是计数排序、基数排序,如果不看书的话,真的很难凭空想到。

       计数排序:设有待排序数组A,辅助数组B,结果数组C。计数排序的关键有两点:

       一、在于辅助数组的设计,辅助数组C上元素的索引对应数组A中的某个具体的元素。而C上的元素C[i],则表示了A中有C[i]个元素小于等于值i。

       二、从辅助数组C到结果数组B的还原,从数组末尾向前还原,直觉上的依据就是将符合条件的元素插入到适合范围的最右侧。很绕口哈,举个例子:C[3]=3,说明A中小于等3的有3个元素,而这3个元素必定分布在1,2,3这3个位置。。哎,扯不清了>.<,还是直接上代码吧。

package com.wly.algorithmbase.sort;  
/**
 * 计数排序,适合于小范围数据分布的排序,时间复杂度O(k+n)
 * 注意:这里的排序假设前提所有元素都是大于0的正整数
 * @author wly
 * @pseudocode
 * for i <- 1 to k  //k表示带排序数组的元素上限值
 * 	  do c[i] <- 0  //辅助数组,长度为k
 * for j <- 1 to n  //将元素数组映射到辅助数组
 * 	  do c[A[j]] <- c[A[j]] + 1 
 * for i <- 2 to k  //处理辅助数组,使c[j]表示待排序数组中小于等于j的元素个数
 *    do c[i] <- c[i] + c[i-1]
 * for j <- n downto 1  //从后往前还原排序数组元素到一个新的数组
 *    do B[C[A[j]]] <- A[i]-1
 *       C[A[j]] <- C[A[j]] - 1  //更新辅助数组,因为有一个小于等于j的元素被还原
 *
 */
public class CountingSort {

	public static void main(String[] args) {
		
		//首位加0,同步伪代码
		int[] A = {0,3,5,1,2,7,4,3,2,1,6,7,2};
		System.out.println("排序前:");
		for(int i:A) {
			System.out.print(i + " ");
		}
		System.out.println("\n排序后:");
		CountingSort countingSort = new CountingSort();
		int[] B = countingSort.sort(A);
		for(int i:B) {
			System.out.print(i + " ");
		}
	}
	
	/**
	 * 计数排序实现,注意这里的实现和伪代码不同的是,数组是从0开始的
	 * 
	 * @param A
	 */
	public int[] sort(int[] A) {
		int k = findMax(A);
		int[] C = new int[k+1]; //长度加1,同步伪代码
		int[] B = new int[A.length];
		
		//初始化
		for(int i=0;i<C.length;i++) {
			C[i] = 0;
		}
		//将带排序数组元素重复个数映射到辅助数组中
		for(int i=1;i<A.length;i++) {
			C[A[i]] = C[A[i]] + 1;
		}
		//处理辅助数组,使c[j]表示待排序数组中小于等于j的元素个数
		for(int i=1;i<C.length;i++) {
			C[i] = C[i] + C[i-1];
		}
		//从后往前还原排序数组元素到一个新的数组
		int i = A.length-1;
		for(;i>0;i--) {
			B[C[A[i]]] = A[i];
			C[A[i]] = C[A[i]] - 1;
		}
		return B;
	}
	
	public int findMax(int[] A) {
		int temp = 0;
		for(int i:A) {
			if(i > temp) {
				temp = i;
			}
		}
		return temp;
	}
}

       运行结果:

排序前:
0 3 5 1 2 7 4 3 2 1 6 7 2 
排序后:
0 1 1 2 2 2 3 3 4 5 6 7 7 

        基数排序:一句话,从低位往高位排序,如果相同则保持位置。算法的原理是当对第T位进行排序时,后面的T-1都已经完成排序了,即影响排序结果的之后第T位。或者说第T为的对排序的影响大于后面T-1位数,只有在第T位相同时,采用T-1位的比较结果做补充。

       由于基数排序是从低到高一位一位进行排序的,那么可以使用上文中讲到的计数排序来完成每一位的排序(实际上可以将2位数视为一个比较单元,用计数排序进行排序)。

package com.wly.algorithmbase.sort;

/**
 * 基数排序
 * @author wly
 *
 */
public class RadixSort {

	public static void main(String[] args) {
		
		byte[][] A = {
			{0,0,0,0,0,0,0,0,0},
			{1,2,3,4,5,6,4,8,9},
			{1,5,3,4,5,6,7,8,9},
			{3,2,3,4,5,6,7,8,6},
			{1,2,3,4,5,6,7,8,9},
			{1,2,3,4,5,6,7,9,9},
			{1,2,3,4,5,6,3,8,9},
			{1,2,3,4,5,2,7,8,9},
			{1,2,3,4,6,6,7,8,9},
			{1,2,3,9,5,6,7,8,9},
				
		};
		System.out.println("基数排序前:");
		for(int i=0;i<A.length;i++) {
			for(int j=0;j<A[0].length;j++) {
				System.out.print(A[i][j] + " ");
			}
			System.out.println();
		}
		System.out.println("\n基数排序后:");
		RadixSort sort = new RadixSort();
		sort.sort(A, A[0].length-1);
	}
	public void sort(byte[][] A,int p) {
		byte[][] B = new byte[A.length][A[0].length];
		int[] C = new int[10];

		if(p >= 0) {//根据第i为进行排序
			//初始化
			for(int i=0;i<C.length;i++) {
				C[i] = 0;
			}
			//将带排序数组元素重复个数映射到辅助数组中
			for(int i=1;i<A.length;i++) {
				C[A[i][p]] = C[A[i][p]] + 1;
			}
			//处理辅助数组,使c[j]表示待排序数组中小于等于j的元素个数
			for(int i=1;i<C.length;i++) {
				C[i] = C[i] + C[i-1];
			}
			//从后往前还原排序数组元素到一个新的数组
			int i = A.length-1;
			for(;i>0;i--) {
				B[C[A[i][p]]] = A[i];
				C[A[i][p]] = C[A[i][p]] - 1;
			}
			sort(B,p-1);
		} else {
			for(int i=0;i<A.length;i++) {
				for(int j=0;j<A[i].length;j++) {
					System.out.print(A[i][j] + " ");
				}
				System.out.println();
			}
		}
	}
}

       运行结果:

基数排序前:
0 0 0 0 0 0 0 0 0 
1 2 3 4 5 6 4 8 9 
1 5 3 4 5 6 7 8 9 
3 2 3 4 5 6 7 8 6 
1 2 3 4 5 6 7 8 9 
1 2 3 4 5 6 7 9 9 
1 2 3 4 5 6 3 8 9 
1 2 3 4 5 2 7 8 9 
1 2 3 4 6 6 7 8 9 
1 2 3 9 5 6 7 8 9 

基数排序后:
0 0 0 0 0 0 0 0 0 
1 2 3 4 5 2 7 8 9 
1 2 3 4 5 6 3 8 9 
1 2 3 4 5 6 4 8 9 
1 2 3 4 5 6 7 8 9 
1 2 3 4 5 6 7 9 9 
1 2 3 4 6 6 7 8 9 
1 2 3 9 5 6 7 8 9 
1 5 3 4 5 6 7 8 9 
3 2 3 4 5 6 7 8 6 

         O啦~~~

       谢谢!!

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:174031次
    • 积分:3000
    • 等级:
    • 排名:第12305名
    • 原创:108篇
    • 转载:9篇
    • 译文:5篇
    • 评论:138条
    最新评论