poj 1157 LITTLE SHOP OF FLOWERS(动态规划:数塔加强)

开始读题没读清楚,以为只用每行选一个数,选的数和以前做出选择所有的数均不在一列

纠结了好久,感觉好像只能暴力啊

后来才知道是题意没读清,原来要求当前做出的选择在之前所作选择的右侧

那就很好做了,模型就是多个数塔问题集合到一起了

这个题比较恶心的一点就是有负数

例如:

3 3

-50 -50 -50

-50 -50 -50

-50 -50 -50

对应的结果应该是-150

这些问题考虑到了就很容易了,代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 110
#define INF 0x7fffffff
using namespace std;

int a[MAXN][MAXN], dp[MAXN][MAXN];

int main(void) {
    int F, V, tmp, ans;
    while(scanf("%d%d", &F, &V) != EOF) {
        for(int i=1; i<=F; ++i) {
            for(int j=1; j<=V; ++j) {
                scanf("%d", &a[i][j]);
            }
        }

        ans = -INF;
        for(int i=1; i<=V; ++i) {
            dp[1][i] = a[1][i];
        }

        for(int i=2; i<=F; ++i) {
            for(int j=i; j<=V; ++j) {//当前行必然至少从第i个开始
                //dp[i][j] = max(dp[i-1][k]);
                tmp = -INF;
                for(int k=i-1; k<j; ++k) {//同上,上一行必然至少从第i-1个开始
                    tmp = max(tmp, dp[i-1][k]);
                }
                dp[i][j] = tmp+a[i][j];
                //printf("dp[%d][%d] = %d\n", i, j, dp[i][j]);
            }
        }
        for(int i=F; i<=V; ++i)
            ans = max(ans, dp[F][i]);
        printf("%d\n", ans);
    }
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给定两个长度均为 $n$ 的数组 $A,B$,其中 $A$ 数组中的元素两两不同,$B$ 数组中元素也两两不同。 定义 $A$ 数组的第 $i$ 个元素为 $a_i$,$B$ 数组的第 $i$ 个元素为 $b_i$。定义一个四元组 $(i,j,k,l)$ 符合条件当且仅当 $1 \leq i < j \leq n$,$1 \leq k < l \leq n$,$$ a_i+b_j=k+l $$ 问有多少个符合条件的四元组。 输入 输入的第一行为一个整数 $n$,表示 $A$ 和 $B$ 数组的长度。 接下来 $n$ 行,第 $i$ 行包含两个整数 $A_i$ 和 $B_i$。 输出 输出一行,一个整数,表示符合条件的四元组个数。 输入样例 3 1 1 2 2 3 3 输出样例 6 提示 $1 \leq n \leq 1500$,$1 \leq A_i,B_i \leq 10^9$ 这一题要求解符合条件的四元组。其中有一个直观的想法就是将四元组分类讨论,如下所示: $$a_i + b_j = k + l$$ 分类讨论,当 $i < k, j < l$ 时就是一种方案,当 $i > k, j > l$ 时是另一种情况。 因此,对于每一种 $a_i + b_j$ 的和,记录下它的出现次数,同时记录下这个和所对应的 $i, j$ 的值。在计算的过程中,如果遇到相同的和的时候,再次遇到时是可以直接忽略的,因为等式是对称的。 统计符合条件的四元组当然要对和进行枚举,但是值得注意的是,在构造符合条件的 $k, l$ 的时候,数组 $C$ 和 $D$ 的记录顺序是无关紧要的,因为等式 $a_i + b_j = k + l$ 已经将每个数字都制约了,它们可以出现任意的顺序。因此,在统计 $C$ 和 $D$ 对于计算答案来说是无区别的。 这一题值得特别注意的是,当数组中有数据的时候,要注意考虑到数据越界可能导致结果错误。在本题中,由于 $a_i, b_j$ 的上限是 $10^9$,因此 $a_i + b_j$ 的上限最大可能会达到 $2 \times 10^9$,因此在计算时一定要使用 long long 类型,否则很容易产生错误。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值