关闭

基数排序

178人阅读 评论(0) 收藏 举报
分类:

http://www.cnblogs.com/jingmoxukong/p/4311237.html

基数排序与本系列前面讲解的七种排序方法都不同,它不需要比较关键字的大小

它是根据关键字中各位的值,通过对排序的N个元素进行若干趟“分配”与“收集”来实现排序的。 

 

不妨通过一个具体的实例来展示一下,基数排序是如何进行的。 

设有一个初始序列为: R {50, 123,543, 187, 49, 30, 0, 2, 11, 100}。

我们知道,任何一个阿拉伯数,它的各个位数上的基数都是以0~9来表示的。

所以我们不妨把0~9视为10个桶。 

我们先根据序列的个位数的数字来进行分类,将其分到指定的桶中。例如:R[0] = 50,个位数上是0,将这个数存入编号为0的桶中。

分类后,我们在从各个桶中,将这些数按照从编号0到编号9的顺序依次将所有数取出来。

这时,得到的序列就是个位数上呈递增趋势的序列。 

按照个位数排序: {50, 30, 0,100, 11, 2, 123, 543, 187, 49}。

接下来,可以对十位数、百位数也按照这种方法进行排序,最后就能得到排序完成的序列。

package notes.javase.algorithm.sort;

 

public class RadixSort {

 

    // 获取x这个数的d位数上的数字

    // 比如获取123的1位数,结果返回3

    public int getDigit(int x, int d) {

        int a[] = {

                1, 1, 10, 100

        }; // 本实例中的最大数是百位数,所以只要到100就可以了

        return ((x / a[d]) % 10);

    }

 

    public void radixSort(int[] list, int begin, int end, int digit) {

        final int radix = 10; // 基数

        int i = 0, j = 0;

        int[] count = new int[radix]; // 存放各个桶的数据统计个数

        int[] bucket = new int[end - begin + 1];

 

        // 按照从低位到高位的顺序执行排序过程

        for (int d = 1; d <= digit; d++) {

 

            // 置空各个桶的数据统计

            for (i = 0; i < radix; i++) {

                count[i] = 0;

            }

 

            // 统计各个桶将要装入的数据个数

            for (i = begin; i <= end; i++) {

                j = getDigit(list[i], d);

                count[j]++;

            }

 

            // count[i]表示第i个桶的右边界索引

            for (i = 1; i < radix; i++) {

                count[i] = count[i] + count[i - 1];

            }

 

            // 将数据依次装入桶中

            // 这里要从右向左扫描,保证排序稳定性

            for (i = end; i >= begin; i--) {

                j = getDigit(list[i], d); // 求出关键码的第k位的数字, 例如:576的第3位是5

                bucket[count[j] - 1] = list[i]; // 放入对应的桶中,count[j]-1是第j个桶的右边界索引

                count[j]--; // 对应桶的装入数据索引减一

            }

 

            // 将已分配好的桶中数据再倒出来,此时已是对应当前位数有序的表

            for (i = begin, j = 0; i <= end; i++, j++) {

                list[i] = bucket[j];

            }

        }

    }

 

    public int[] sort(int[] list) {

        radixSort(list, 0, list.length - 1, 3);

        return list;

    }

 

    // 打印完整序列

    public void printAll(int[] list) {

        for (int value : list) {

            System.out.print(value + "\t");

        }

        System.out.println();

    }

 

    public static void main(String[] args) {

        int[] array = {

                50, 123, 543, 187, 49, 30, 0, 2, 11, 100

        };

        RadixSort radix = new RadixSort();

        System.out.print("排序前:\t\t");

        radix.printAll(array);

        radix.sort(array);

        System.out.print("排序后:\t\t");

        radix.printAll(array);

    }

}

基数排序的性能

排序类别

排序方法

时间复杂度

空间复杂度

稳定性

复杂性

平均情况

最坏情况

最好情况

基数排序

基数排序

O(d(n+r))

O(d(n+r))

O(d(n+r))

O(n+r)

稳定

较复杂

 

时间复杂度

通过上文可知,假设在基数排序中,r为基数,d为位数。则基数排序的时间复杂度为O(d(n+r))

我们可以看出,基数排序的效率和初始序列是否有序没有关联。

 

空间复杂度

在基数排序过程中,对于任何位数上的基数进行“装桶”操作时,都需要n+r个临时空间。

 

算法稳定性

在基数排序过程中,每次都是将当前位数上相同数值的元素统一“装桶”,并不需要交换位置。所以基数排序是稳定的算法。
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:653518次
    • 积分:14407
    • 等级:
    • 排名:第864名
    • 原创:763篇
    • 转载:192篇
    • 译文:0篇
    • 评论:58条
    博客专栏
    文章分类
    最新评论