关闭

非空二叉树的一个有趣的性质:n0 = n2 + 1

261人阅读 评论(0) 收藏 举报
分类:

对任何非空二叉树T,若n0 表示叶结点的个数、n2 表示度为2 的非叶结点的个数,那么两者满足关系n0 = n2 + 1。

这个性质很有意思,下面我们来证明它。

证明:首先,假设该二叉树有N 个节点,那么它会有多少条边呢?答案是N - 1,这是因为除了根节点,其余的每个节点都有且只有一个父节点,那么这N 个节点恰好为树贡献了N - 1 条边。这是从下往上的思考,而从上往下(从树根到叶节点)的思考,容易得到每个节点的度数和 0*n0 + 1*n1 + 2*n2 即为边的个数。

因此,我们有等式 N - 1 = n1 + 2*n2,把N 用n0 + n1 + n2 替换,得到n0 + n1 + n2 - 1 = n1 + 2*n2,于是有

    n0 = n2 + 1。命题得证。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:613697次
    • 积分:13919
    • 等级:
    • 排名:第891名
    • 原创:756篇
    • 转载:185篇
    • 译文:0篇
    • 评论:51条
    博客专栏
    文章分类
    最新评论