关闭

hihocoder #1363 : 图像算子(高斯消元)

194人阅读 评论(0) 收藏 举报
分类:

描述

在图像处理的技术中,经常会用到算子与图像进行卷积运算,从而达到平滑图像或是查找边界的效果。

假设原图为H × W的矩阵A,算子矩阵为D × D的矩阵Op,则处理后的矩阵B大小为(H-D+1) × (W-D+1)。其中:

B[i][j] = ∑(A[i-1+dx][j-1+dy]*Op[dx][dy]) | (dx = 1 .. D, dy = 1 .. D), 1 ≤ i ≤ H-D+1, 1 ≤ j ≤ W-D+1

给定矩阵A和B,以及算子矩阵的边长D。你能求出算子矩阵中每个元素的值吗?

输入

第1行:3个整数,H, W, D,分别表示原图的高度和宽度,以及算子矩阵的大小。5≤H,W≤60,1≤D≤5,D一定是奇数。

第2..H+1行:每行W个整数,第i+1行第j列表示A[i][j],0≤A[i][j]≤255

接下来H-D+1行:每行W-D+1个整数,表示B[i][j],B[i][j]在int范围内,可能为负数。


输入保证有唯一解,并且解矩阵的每个元素都是整数。

输出

第1..D行:每行D个整数,第i行第j列表示Op[i][j]。

样例输入
5 5 3
1 6 13 10 3
13 1 5 6 15
8 2 15 0 12
19 19 17 18 18
9 18 19 5 17
22 15 6
35 -36 51
-20 3 -32
样例输出
0 1 0
1 -4 1
0 
 

Op[1][1]、Op[2][1]、……Op[D][1]、Op[2][1]、Op[2][2]、……Op[D][D] 这D*D个未知变量

i*j个等式 求位置变量的值

高斯消元

但是很奇怪的是。。。数组为什么要开的那么大才能过 根据这个题目的数据范围 我觉的没有必要搞这么大的啊。。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>

#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-9
#define MOD 10009
#define MAXN 10010
#define MAXM 100010
#define INF 99999999
#define ll __int64
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)

using namespace std;

int A[110][110],B[110][110];
double a[5000][5000],x[5000];
int equ,var;

int Gauss()
{
    int i,j,k,col,max_r;
    for(k=0,col=0;k<equ&&col<var;k++,col++)
    {
        max_r=k;
        for(i=k+1;i<equ;i++)
            if(fabs(a[i][col])>fabs(a[max_r][col]))
                max_r=i;
        if(fabs(a[max_r][col])<eps) return 0;
        if(k!=max_r)
        {
            for(j=col;j<var;j++)
            {
                swap(a[k][j],a[max_r][j]);
            }
            swap(x[k],x[max_r]);
        }
        x[k]/=a[k][col];
        for(j=col+1;j<var;j++)
            a[k][j]/=a[k][col];
        a[k][col]=1;
        for(i=0;i<equ;i++)
            if(i!=k)
        {
            x[i]-=x[k]*a[i][col];
            for(j=col+1;j<var;j++)
                a[i][j]-=a[k][j]*a[i][col];
            a[i][col]=0;
        }
    }
    return 1;
}


int main()
{
//    fread;
    int h,w,d;
    while(scanf("%d%d%d",&h,&w,&d)!=EOF)
    {
        for(int i=0;i<h;i++)
            for(int j=0;j<w;j++)
                scanf("%d",&A[i][j]);
        for(int i=0;i<h-d+1;i++)
            for(int j=0;j<w-d+1;j++)
                scanf("%d",&B[i][j]);
        int num=0;
        for(int i=0;i<h-d+1;i++)
            for(int j=0;j<w-d+1;j++)
        {
            for(int k=0;k<d;k++)
                for(int l=0;l<d;l++)
            {
                a[num][k*d+l]=A[i+k][j+l];
            }
            x[num]=B[i][j];
            num++;
        }
        equ=num;//等式个数
        var=d*d;//变量个数
        Gauss();
        for(int i=0;i<d*d;i++)
        {
            if(i%d!=0) printf(" ");
            if(x[i]>-1e-6) printf("%.0f",x[i]+1e-6);
            else printf("%.0f",x[i]-1e-6);
            if(i%d==d-1) puts("");
        }
    }
    return 0;
}







      

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:247235次
    • 积分:6855
    • 等级:
    • 排名:第3362名
    • 原创:453篇
    • 转载:5篇
    • 译文:0篇
    • 评论:39条
    最新评论