关闭

NYOJ 42 一笔画问题 http://acm.nyist.net/JudgeOnline/problem.php?pid=42

699人阅读 评论(1) 收藏 举报
分类:
这道题主要是用到了一个搜索外加欧拉回路,做得时候是不知道欧拉回路的,自己查的资料,就把问题解决了,简单来说怎么判断这个图是不是欧拉回路呢?其实很简单,首先这个图必须是连通的,然后就是需要判断各个点的度(这个点有几条边它的度就是多少)了。把所有的点的度统计出来, 这些点的度是奇数的个数如果小于等余2,那么这个图就是欧拉回路,后面这句话举个例子来说有5个点,他们点的度数分别是1,2,3,4,5的话这里面有三个奇数,则这个图就不是欧拉回路,如果这5个点的度数分别是2,3,4,6,8的话那么这个里面只有一个奇数,是小于等于二的  这个图就是欧拉回路!
知道欧拉回路怎么回事了  就可以下手解决这道题了!
1:建立一个邻接表,将给的点存到里面(在建立的时候就可以顺便把度数记录下来了代码中标注了)
2:用深搜把图遍历,判断是否为连通图  不是直接输出No
3“如果是联通的的 则要利用欧拉图了, 找出他所有的度  判断的是奇数的个数  奇数个数大于二  则输出No 小于等于二,则是欧拉回路
ps:该图是欧拉回路则肯定一笔画  可以走完所有的边!
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int b[1005];
struct cmp{
	int v;
	struct cmp *next;
};
struct amp{
	int count;// 加这一个变量是标志该点的度是多少 
	struct cmp *w;
}a[1005];
int prime(int n)//判断是否为奇数 
{
	if(n % 2)
		return 1;
		return 0; 
}
struct cmp *f()//申请空间函数 
{
	struct cmp * T;
	T = (struct cmp *)malloc(sizeof(struct cmp));
	T -> next = NULL;
	return T;
}
void dfs(int m)//深搜 
{
	if(b[m])
		return;
	else
		b[m] = 1;	
	struct cmp *z;
	z = a[m].w;
	while(z)
	{
		dfs(z -> v);
		z = z -> next;
	}
	
}
int main()
{
	int t, p, q, x, y, i, flag;
	struct cmp *T, *S;
	scanf("%d", &t);
	while(t--)
	{
		scanf("%d%d", &p, &q);
		for(i = 0; i < 1005; i++)
		{
			a[i].count = 0;
			a[i].w = NULL;
		}
		memset(b, 0, sizeof(b));
		for( i = 0; i < q; i++ )
		{
			scanf("%d%d", &x, &y);//输入后下面是按的在头结点插入建立的邻接表 
			T = f();
			T -> v = y;
			T -> next = a[x].w;
			a[x].w = T;
			a[x].count++;
			S = f();
			S -> v = x;
			S -> next = a[y].w;
			a[y].w = S;
			a[y].count++;			
		}
		dfs(1);
		flag = 1;
		for( i = 1; i <= p; i++ )
		{
			if(!b[i])
			{
				flag = 0;
				break;
			}				
		}
		if(!flag)//这是连不连通的判断 
		{
			printf("No\n");
			continue;
		}
		flag = 0;
		for( i = 0; i < p; i++ )
		{
			if(prime(a[i].count))
				flag++;
		}
		if(flag > 2)//这就是当连通时  欧拉回路的判断 
			printf("No\n");
		else
			printf("Yes\n");	
	}
}

0
0

猜你在找
【直播】计算机视觉原理及实战——屈教授
【套餐】深度学习入门视频课程——唐宇迪
【套餐】Hadoop生态系统零基础入门
【套餐】嵌入式Linux C编程基础
【套餐】2017软考系统集成项目——任铄
【套餐】Android 5.x顶级视频课程——李宁
【直播】广义线性模型及其应用——李科
【直播】从0到1 区块链的概念到实践
【直播】机器学习之凸优化——马博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:6346次
    • 积分:170
    • 等级:
    • 排名:千里之外
    • 原创:10篇
    • 转载:0篇
    • 译文:1篇
    • 评论:1条
    文章分类
    文章存档
    最新评论