POJ-1904 King's Quest 强连通分量求完美匹配

原创 2013年12月03日 20:08:10

http://poj.org/problem?id=1904

题目意思:有n个女生和n个男生,给定一些关系表示男生喜欢女生(即两个人可以结婚),再给定一个初始匹配,表示这个男生和哪个女生结婚,初始匹配必定是合法的.求每个男生可以和哪几个女生可以结婚其他人还难能都找个女生结婚。
思路:第一反应还以为是求二分完美匹配,百度题解再知道用连通分量 0.0  将男生从1到n编号,女生从(n+1)到2*n编号,输入时如果男生u可以和女生v结婚,那么就做一条从u到v的边(u,v),对于输入的初始匹配(u,v)(表示男生u和女生v结婚),那么从v做一条到u的边(v,u),然后求解图的强连通分量,如果男身i和女生j在同一个强连通分量内,且i到j有直接的边。则他们可以结婚。



#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = 4105;
const int inf = 1<<29;
int n;
int times,ans,top;
bool vis[maxn];
int low[maxn],dfn[maxn],stack[maxn],p[maxn];
vector<int>map[maxn];
vector<int>cnt;

void dfs(int u)
{
	int v;
    dfn[u] = low[u] = ++times;                     //为节点u设定次序
    vis[u] = true;                             //判断是否在栈中
    stack[++top] = u;							  //将节点i压入栈中
	for (  int i = 0; i < map[u].size(); i ++ )						 //遍历每一条边
    {
        v = map[u][i];
		if ( !dfn[v] )					//如果节点i未被访问过
		{
			dfs(v);					 //继续向下查找
			low[u] = low[v] <= low[u]?low[v]:low[u];
		}
		else if ( vis[v] ) //如果节点i在栈中
			low[u] = dfn[v] <= low[u]?dfn[v]:low[u];
    }
    if ( dfn[u] == low[u] )     //如果节点i是强连通分量的根
    {
        ans++;                          //强连通分量数
        do
        {
            v = stack[top--];             //把栈里v上面的顶点弹栈
            p[v] = ans;
			vis[v] = false;
        }while ( v != u );
        
    }
}
void tarjan()
{
    ans = times = top = 0;                //初始化
	memset( vis,0,sizeof(vis) );
    memset( dfn,0,sizeof(dfn) );
    for( int i = 1; i <= n; i ++ )         //遍历每个节点
        if ( !dfn[i] )
            dfs(i);
}
int main()
{
    //freopen("data.txt","r",stdin);
	int m,temp,g;
	while( scanf("%d",&m) != EOF )
	{
		for( int i = 1; i <= 2*m; i ++ )
			map[i].clear();
		for( int i = 1; i <= m; i ++ )
		{
			scanf("%d",&temp);
			for( int j = 1; j <= temp; j ++ )
			{
				scanf("%d",&g);
				map[i].push_back(g+m);
			}
		}
		for( int i = 1; i <= m; i ++ )
		{
			scanf("%d",&g);
			map[g+m].push_back(i);
		}
		n = m*2;
		tarjan();
		for( int u = 1; u <= m; u ++ )
		{
			cnt.clear();
			for( int i = 0; i < map[u].size(); i ++ )
			{
				int v = map[u][i];
				if( p[u] == p[v] )
					cnt.push_back(v-m);
			}
			printf("%d",cnt.size());
			sort( cnt.begin(),cnt.end() );
			for( int j = 0; j < cnt.size(); j ++ )
				printf(" %d",cnt[j]);
			puts("");
		}
	}
    return 0;
}

#include<stdio.h>
#include<string.h>
#include<vector>
#include<queue>
using namespace std;
const int maxn = 5105;
const int inf = 1<<29;
int n;
int times,ans,top;
bool map[maxn][maxn],vis[maxn];
int low[maxn],dfn[maxn],stack[maxn],p[maxn];
void dfs(int u)
{
    dfn[u] = low[u] = ++times;                     //为节点u设定次序
    vis[u] = true;                             //判断是否在栈中
    stack[++top] = u;							  //将节点i压入栈中
    for ( int i = 1; i <= n; i ++ )						  //遍历每一条边
    {
        if( map[u][i] )
		{
			if (!dfn[i])					//如果节点i未被访问过
			{
				dfs(i);					 //继续向下查找
				low[u] = low[i] <= low[u]?low[i]:low[u];
			}
			else if ( vis[i] ) //如果节点i在栈中
				low[u] = dfn[i] <= low[u]?dfn[i]:low[u];
		}
    }
	int i;
    if ( dfn[u] == low[u] )     //如果节点i是强连通分量的根
    {
        ans++;                          //强连通分量数
        do
        {
            i = stack[top--];             //把栈里v上面的顶点弹栈
            p[i] = ans;
			vis[i] = false;
        }while ( i != u );
        
    }
}
void tarjan()
{
    int i;
    ans = times = top = 0;                //初始化
	memset( vis,0,sizeof(vis) );
    memset( dfn,0,sizeof(dfn) );
    for( i = 1; i <= n; i ++ )         //遍历每个节点
        if ( !dfn[i] )
            dfs(i);
}
int main()
{
    //freopen("data.txt","r",stdin);
	int m,temp,g;
	while( scanf("%d",&m) != EOF )
	{
		memset(map,0,sizeof(map));
		for( int i = 1; i <= m; i ++ )
		{
			scanf("%d",&temp);
			for( int j = 1; j <= temp; j ++ )
			{
				scanf("%d",&g);
				map[i][m+g] = true;
			}
		}
		for( int i = 1; i <= m; i ++ )
		{
			scanf("%d",&g);
			map[m+g][i] = true;
		}
		n = m*2;
		tarjan();
		vector<int>ans;
		for( int i = 1; i <= m; i ++ )
		{
			ans.clear();
			for( int j = m+1; j <= n; j ++ )
				if( map[i][j] && p[i] == p[j] )
					ans.push_back(j-m);
			printf("%d",ans.size());
			for( int j = 0; j < ans.size(); j ++ )
				printf(" %d",ans[j]);
			puts("");
		}
	}
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 1904 King's Quest强连通分量+二分图完美匹配

题目描述:Description Once upon a time there lived a king and he had N sons. And there were N beautiful ...

POJ 1904 King's Quest(强连通分量+匹配)

题意:有n个王子,每个王子都有k个喜欢的公主,每个王子只能和喜欢的公主结婚,巫师给出一个匹配表,每个王子都和一个公主结婚,但是国王不满意,他要求巫师给他另一个表,每个王子可以和几个公主结婚,按序号升序...

poj 1904 King's Quest 强连通分量

讲一下建图过程,题目给出了我们一组匹配match[i]  。对于这一组匹配好的解,我们建边 i->j,  对于能匹配但是不是题目给出的匹配的边,建边j->i;  那么对于一个son和一个gril,如果...

POJ 1904 King's Quest 【强连通分量】

题目链接:http://poj.org/problem?id=1904题意: 有n个王子喜欢n个姑娘,一个王子可以喜欢多个姑娘,王子只能娶一个姑娘,现在问每个王子能选哪几个姑娘,使得其它王子都能娶到...

POJ 1904 King's Quest (强连通分量)

题目地址:POJ 1904 很神奇的一道题啊。至于详解看这篇博客吧,传送门写的非常详细。 代码如下:#include #include #include #include #include...

ZOJ2470 POJ1904 King's Quest,强连通分量

蛮好的一道题,初看觉得是二分图匹配,但是仔细思索却是强连通分量。关于题目解释可以看这里点击打开链接 题意:有n个王子,有n个美女,每个王子可能同时喜欢多个美女,数据已经给出一组完全匹配的方案...

POJ1904/ZOJ2470 King's Quest(tarjan判强连通分量)

POJ上面这个题的时限是15000ms,看着都DT,最起码挺吓人的…… 题意是,N个男生和N个女生,告诉你每个男生喜欢的女生编号,然后给出一个初始匹配(这个初始匹配是完备匹配),然后求所有可能的完备...

poj1904 King's Quest 强连通分量

题意: 有n个王子和n个女孩,每个王子可能喜欢多个女孩。 先给出一个初始的完备匹配,问每个王子可以选择哪些女孩(即无论王子选择这些女孩中的哪一个),使得剩下的王子仍能够选择喜欢的女孩。 思路: 每...

POJ-1904-King's Quest(强连通分量)

大致题意: N个王子,N个妹子,每个王子喜欢N个妹子中的K个, 现给出一组完美匹配,题意扯了半天其实就是让求所有完美匹配每个王子解的集合。 题解: 很好,要不是丢强连通分类里就当匹配来做了。。。 问题...

POJ 1904 King's Quest(二分图由已知完美匹配求全部完美匹配)

King's Quest Time Limit: 15000MS   Memory Limit: 65536K Total Submissions: 9113   Accepted: 33...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)