关闭

Tensorflow移植到Android

手机调用TF模型的过程简介:   1、 保存训练完毕的TF模型  2、 在Android项目中导入TF模型、导入Android平台调用TF模型需要的jar包和so文件 (它们负责TF模型的解析和运算)  3、定义变量、存储数据,通过jar包提供的接口进行模型的调用     移植过程   我们以mnist数据集上自己训练的一个图像识别模型为例,进行讲解   一、 在使用pyth...
阅读(107) 评论(0)

Local Binary Patterns LBP算法

使用 LBP 算子 提取特征 向量 进行识别 //假如 LBP 图片 大小 32*32  然后 把图片分成 4*4的大小块,求每块的 直方图,把所有块的 直方图的值 作为特征向量   对LBP图像成m个块,每个块提取直方图。通过连接局部特直方图(而不是合并)然后就能得到空间增强的特征向量。这些直方图被称为局部二值模式直方图。...
阅读(24) 评论(0)

PCA实现流程

PCA算法流程...
阅读(20) 评论(0)

双摄相关应用

1、双摄像头可以测距,可做距离相关的应用 人眼很容易对一个物体的距离进行定位,但当人闭上其中一个眼睛后,定位能力就会下降很多。双摄像头就是模拟人眼的应用。简单的说,测距离的话,就是通过算法算出,被拍摄物体与左/右摄像头的角度θ1和θ2,再加上固定的y值(即两个摄像头的中心距),就非常容易算出z值(即物体到Camera的距离)。 如上图,由于双摄像头通过算法,可以判断被摄物体的距离,所以...
阅读(39) 评论(0)

双目摄像头相关参数介绍

一、一般地,景深双摄采用两颗像素数量不同的传感器,其中像素较多的为主摄像头,像素较少的为副摄像头。在开启景深双摄后,主摄像头负责拍摄照片,副摄像头则负责记录取景器中各焦平面的景深信息,并交由处理器进行计算,进而添加虚化效果。使用景深双摄,你可以通过“加特技”的方式获得可调节强度的浅景深观感,而多数景深双摄机型的虚拟光圈都能够提供等效F/0.95到等效F/16之间的调节,光圈越大浅景深效果越强。 ...
阅读(41) 评论(0)

tensorflow根据人脸分辨性别

数据收集 训练数据 – Adience数据集 Adience数据集来源为Flickr相册,由用户使用iPhone或者其它智能手机设备拍摄,该数据集主要用于进行年龄和性别的未经过滤的面孔估计。同时,里面还进行了相应的landmark的标注,其中包含2284个类别和26580张图片。 Adience数据集下载地址:http://www.openu.ac.il/home/hassner/Adien...
阅读(12) 评论(0)

深度学习简介

深度学习介绍 首先介绍深度学习、机器学习、人工智能三者的关系。 由图可以看出 三者拥有包含关系,并且三者提出的时间点也有先后之分。 人工智能 早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。这就是我们现在所说的“强人工智能”(General AI)。这个无所不能的机器,它有着我们所有的感知(甚至比人...
阅读(19) 评论(0)

Google IO Ai应用

背景简介 谷歌MobileVision团队的工作是提供最新的计算机视觉算法,并在低延迟、无网络访问的情况下在设备上实现。而MobileVisionAPI既能在安卓手机上部署,也能在iOS上部署。 在视频中,Hisu演示了如何使用MobileVision的Face、Barcode和TextAPI。在视频演示中,使用BarcodeAPI手机扫描广告页上的二维码,就能自动跳转到产品页;FaceAPI可...
阅读(15) 评论(0)

Android架构分析-MVC & MVP

MVC的基本介绍 MVC全称是Model - View - Controller,是模型(model)-视图(view)-控制器(controller)的缩写。MVC是一种框架模式而非设计模式,GOF把MVC看作是3种设计模式:观察者模式、策略模式与组合模式的合体,而核心是观察者模式。简而言之,框架是大智慧,用来对软件设计进行分工;设计模式是小技巧,对具体问题提出解决方案,以提高代码复用率,降低...
阅读(163) 评论(0)

Android Studio 快捷键笔记

Alt+回车 导入包,自动修正 Ctrl+N 查找类 Ctrl+Shift+N 查找文件 Ctrl+Alt+L 格式化代码 Ctrl+Alt+O 优化导入的类和包 Alt+Insert 生成代码(如get,set方法,构造函数等) Ctrl+E或者Alt+Shift+C 最近更改的代码 Ctrl+R 替换文本 Ctrl+F 查找文本 Ctrl+Shift+Space 自动补全代码...
阅读(99) 评论(1)

朴素贝叶斯算法

简介 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。 综述 对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点都不夸张,只是我们没有意识到罢了。例如,当你看到...
阅读(18) 评论(0)

Android 内存泄漏

Android 内存泄漏分析 前言 对于C++来说,内存泄漏就是new出来的对象没有delete,俗称野指针;对于Java来说,就是new出来的Object 放在Heap上无法被GC回收; 本文通过QQ和Qzone中内存泄漏实例来讲android中内存泄漏分析解法和编写代码应注意的事项。 Java 中的内存分配 静态储存区:编译时就分配好,在程序整个运行期间都存在。它主要存放静态...
阅读(93) 评论(0)

Android、Java线程池的使用

ThreadPoolExecutor的原理 经典书《Java Concurrency in Pratice(Java并发编程实战)》第8章,浓缩如下: 1. 每次提交任务时,如果线程数还没达到coreSize就创建新线程并绑定该任务。 所以第coreSize次提交任务后线程总数必达到coreSize,不会重用之前的空闲线程。 2. 线程数达到coreSize后,新增的任务就放到工作队列里,...
阅读(65) 评论(0)

Tensorflow 实现自编码

概述 AutoEncoder大致是一个将数据的高维特征进行压缩降维编码,再经过相反的解码过程的一种学习方法。学习过程中通过解码得到的最终结果与原数据进行比较,通过修正权重偏置参数降低损失函数,不断提高对原数据的复原能力。学习完成后,前半段的编码过程得到结果即可代表原数据的低维“特征值”。通过学习得到的自编码器模型可以实现将高维数据压缩至所期望的维度,原理与PCA相似。 自编码器是利用神经网...
阅读(74) 评论(0)

tensorflow 使用CNN 进行mnist数据集识别

一、CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784*15 = 11760 多个;若输入的是 带有颜色的RGB格式的手写数字图...
阅读(38) 评论(0)
31条 共3页1 2 3 下一页 尾页
    个人资料
    • 访问:5026次
    • 积分:337
    • 等级:
    • 排名:千里之外
    • 原创:29篇
    • 转载:1篇
    • 译文:1篇
    • 评论:1条
    文章存档