Unique Paths问题及解法

问题描述:

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

问题分析:

本题是一个动态规划问题。经过观察我们发现:

start到finish的路径总数 = start到finish的上边一个格的路径总数 + start到finish的左边一个格的路径总数。依次依次从start开始,计算到每个位置(i,j)时的路径总数。最终可确定到位置(m,n)的路径总数。


过程详见代码:

class Solution {
public:
    int uniquePaths(int m, int n) {
		vector<vector<int>> mat(m + 1, vector<int>(n + 1, 0));
		mat[1][1] = 1;
		for (int i = 1; i <= m; i++)
		{
			for (int j = 1; j <= n; j++)
			{
				if (mat[i][j] == 0) mat[i][j] = mat[i][j - 1] + mat[i - 1][j];
			}
		}
		return mat[m][n];
	}
	
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值