问题描述:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
问题分析:本题是一个动态规划问题。经过观察我们发现:
start到finish的路径总数 = start到finish的上边一个格的路径总数 + start到finish的左边一个格的路径总数。依次依次从start开始,计算到每个位置(i,j)时的路径总数。最终可确定到位置(m,n)的路径总数。
过程详见代码:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> mat(m + 1, vector<int>(n + 1, 0));
mat[1][1] = 1;
for (int i = 1; i <= m; i++)
{
for (int j = 1; j <= n; j++)
{
if (mat[i][j] == 0) mat[i][j] = mat[i][j - 1] + mat[i - 1][j];
}
}
return mat[m][n];
}
};