寻找单个无序数组中第K小的数字

    1、排序

对数组进行排序,然后前K个元素就是需要查找的元素,排序的方法可以采用快速排序,但是我们知道在快速排序中如果已经是有序的数组,采用快速排序的时间复杂度是O(N^2),为了解决这种问题,通常选择随机选择一个数组值pivot作为基准,将数组分为S1 =< pivot和S2 > pivot,这样就能避免快速排序中存在的问题,或者采用随机选择三个元素,然后取中间值作为基准就能避免快速算法的最差时间复杂度,这种方法的前K个数字是有序的。

 

    2、利用快排中的pivot特性

既然是选择前K个对象,那么就没必要对所有的对象进行排序,可以采用快速选择的思想获得前K个对象,比如首先采用快速排序的集合划分方法划分集合:S1,pivot,S2,然后比较K是否小于S1的个数,如何小于,则直接对S1进行快速排序,如果K的个数超过S1,那么对S2进行快速排序,排序完成之后,取数组的前K个元素就是数组的前K个最小值。这种实现方法肯定比第一种的全快速排序要更快速。

 

    3、将数组转换为最小堆的情况

根据最小堆的特性,第一个元素肯定就是数组中的最小值,这时候我们可以将元素保存起来,然后将最后一个元素提升到第一个元素,重新构建最小堆,这样进行K次的最小堆创建,就找到了前K个最小值,这是运用了最小堆的特性,实质上是最小堆的删除实现方法。这种算法的好处是实现了数组的原地排序,并不需要额外的内存空间。

 

    4、接下来的这种思想有点类似桶排序

首先给定一个K个大小的数组b,然后复制数组a中的前K个数到数组b中,将这K个数当成数组a的前K个最小值,对数组b创建最大堆,这时候再次比较数组a中的其他元素,如果其他元素小于数组b的最大值(堆顶),则将堆顶的值进行替换,并重新创建最大堆。这样遍历一次数组就找到了前K个最小元素。这种方法运用了额外的内存空间,特别当选择的K值比较大时,这种方法有待于权衡一下。    这种方法对于海量数据来说是有较好的作用,对于海量数据不能全部存放在内存中,这时候创建一个较小的

数组空间,然后创建最大堆,从硬盘中读取其他的数据,进而实现前K个数据的查找。

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<assert.h>
#include<time.h>

#define LEN 500000
#define K 100

/*堆的性质*/
#define LEFTSON(i) (2*(i)+1)
#define RIGHTSON(i) (2*((i)+1))
#define PARENT(i) (((i)-1)/2)

void swap(int *a, int *b)
{
        assert(a != NULL && b != NULL);

        if(a != b)
        {
                *a = *a ^ *b;
                *b = *a ^ *b;
                *a = *a ^ *b;
        }
}

int partition(int *a, int left, int right)
{
        int pivot = a[right];
        int i = left;
        int j = left - 1;

        assert(a != NULL);

        for(i = left; i < right; ++ i)
        {
                if(a[i] < pivot)
                {
                        ++ j;
                        swap(&a[i],&a[j]);
                }
        }
        swap(&a[j + 1],&a[right]);
        return (j + 1);
}

void quicksort(int *a, int left, int right)
{
        int i = 0;

        assert(a != NULL);

        if(left < right)
        {
                i = partition(a,left,right);
                quicksort(a, left, i - 1);
                quicksort(a, i + 1, right);
        }
}

int QuickSort(int *a, int size)
{
        assert(a != NULL);
        quicksort(a,0,size-1);
}

void quickselect(int *a, int left, int right, int k)
{
        int i = 0;

        assert(a != NULL && left <= k
                && left <= right && k <= right);

        if(left < right)
        {
                i = partition(a, left, right);
                if(i + 1 <= k)
                        quickselect(a, i + 1 , right, k);
                else if(i > k)
                        quickselect(a, left, i - 1, k);
        }
}

void QuickSelect(int *a, int size, int k)
{
        assert(a != NULL);
        quickselect(a, 0, size - 1, k);
}

/*最大堆*/
void max_heapify(int *a, int left, int right)
{
        int tmp = 0;
        int child = left;
        int parent = left;

        assert(a != NULL);

        for(tmp = a[parent]; LEFTSON(parent) <= right;parent = child)
        {
                child = LEFTSON(parent);

                if(child != right && a[child] < a[child + 1])
                        child ++;

                if(tmp < a[child])
                        a[parent] = a[child];
                else /*满足最大堆的特性,直接退出*/
                        break;
        }
        a[parent] = tmp;
}

/*创建最大堆*/
void build_maxheap(int *a, int size)
{
        int i = 0;
        assert(a != NULL);

        for(i = PARENT(size); i >= 0 ; -- i)
                max_heapify(a,i,size - 1);
}

/*最小堆的实现*/
void min_heapify(int *a, int left, int right)
{
        int child = 0;
        int tmp = 0;
        int parent = left;

        assert(a != NULL);

        for(tmp = a[parent]; LEFTSON(parent) <= right; parent = child)
        {
                child = LEFTSON(parent);

                if(child != parent && a[child] > a[child + 1])
                        child ++;

                if(a[child] < tmp)
                        a[parent] = a[child];
                else /*满足最小堆的特性,直接退出*/
                        break;
        }
        a[parent] = tmp;
}

/*创建最小堆*/
void build_minheap(int *a, int size)
{
        int i = PARENT(size);

        assert(a != NULL);

        for(; i >= 0; -- i)
                min_heapify(a, i, size - 1);
}

/*采用快速排序查找*/
void find_Kmin_num_1(int *a , int size, int k)
{
        int i = 0;

        assert(a != NULL);

        QuickSort(a, size);

#if 0
        for(i = 0; i < k ; ++ i)
                printf("%d\t",a[i]);

        printf("\n");
#endif
}

/*采用快速选择实现*/
void find_Kmin_num_2(int *a, int size, int k)
{
        int i = 0;

        assert(a != NULL);

        QuickSelect(a, size, k);

#if 0
        for(i = 0; i < k ; ++ i)
                printf("%d\t",a[i]);

        printf("\n");
#endif
}

/*采用最大堆实现*/
void find_Kmin_num_3(int *a, int size, int k)
{
        int i = 0;

        int *b =(int *) malloc(sizeof(int)*k);

        assert(a != NULL && b != NULL);

        for(i = 0; i < k; ++ i)
                b[i] = a[i];

        build_maxheap(b,k);

        for(; i < size; ++ i)
        {
                if(a[i] < b[0])
                {
                        b[0] = a[i];
// build_maxheap(b , k);
                        max_heapify(b,0,k - 1);
                }
        }
#if 0
        for(i = 0; i < k ; ++ i)
                printf("%d\t",b[i]);

        printf("\n");
#endif
}

/*采用最小堆删除元素的方式实现*/
void find_Kmin_num_4(int *a ,int size, int k)
{
        int i = 0;

        assert(a != NULL);

        build_minheap(a, size - 1);
        for(i = 0; i < k; ++ i)
        {
// printf("%d\t",a[0]);

                /*删除a[0],释放a[size - 1 - i]*/
                a[0] = a[size -1 - i];
                min_heapify(a, 0, size - 2 - i);
        }
// printf("\n");
}

int main()
{
        int a[LEN];
        int b[LEN];
        int c[LEN];
        int d[LEN];

        int i = 0,j = 0;

        clock_t _start;
        double times = 0;

        srand((int)time(NULL));

        for(i = 0; i < LEN; ++ i)
        {
                a[i] = rand()%(LEN);
                b[i] = a[i];
                c[i] = a[i];
                d[i] = a[i];

// printf("%d\t",a[i]);
        }
// printf("\n");

        _start = clock();
        find_Kmin_num_1(a,LEN,K);
        times = (double)(clock() - _start)/CLOCKS_PER_SEC;
        printf("快速排序的查找需要:%f\n",times);

        _start = clock();
        find_Kmin_num_2(b,LEN,K);
        times = (double)(clock() - _start)/CLOCKS_PER_SEC;
        printf("快速选择的查找需要:%f\n",times);

        _start = clock();
        find_Kmin_num_3(c,LEN,K);
        times = (double)(clock() - _start)/CLOCKS_PER_SEC;
        printf("最大堆的查找需要:%f\n",times);

        _start = clock();
        find_Kmin_num_4(d,LEN,K);
        times = (double)(clock() - _start)/CLOCKS_PER_SEC;
        printf("最小堆的查找需要:%f\n",times);

        return 0;
}
参考文献:http://blog.chinaunix.net/uid-20937170-id-3347493.html


5、SELECT算法,它能在时间复杂度为O(N)的情况下找出第K大的数



第一步:把数组分成n/5这么多子数组,每个子数组里包含5个数,因为会有无法整出的可能,所以最后一个子数组会小于5.

第二步:用insertionsorting把这5个数排序,然后找出中位数,也就是第3个。

第三步:把获得的中位数又排序,找出中位数的中位数。如果中位数的个数是偶数,那么取排好序的第m/2个数,m指的是中位数的个数。

第四步:然后呢,把原来的数组分成两个部分,一部分比那个中位数的中位数大,一部分比那个中位数的中位数小。我们可以假设左边的数大,右边的数小。然后我们可以得到中位数的中位数的位置i.

第五步:如果i = k,那么那个中位数的中位数就是第k大的数。如果 i < k不用说,第k大的在中位数的中位数的右边,否则就在左边。我们一直recursely这么做,那么就一定能够找到第K大的值了。

其实,算法还是比较容易懂得,关键的关键,是复杂度的分析。如果能够知道复杂度如何求出来的,那么,对算法本身就了解得更清楚。要讲复杂度,首先看一个图。


图中的X 就是“中位数的中位数”, 而且箭头的方向是从大数指到小数。所以,我们可以知道,至少灰色区域的都比X大,这是整个复杂度分析的关键,而,其它点能否说它比X大,我们不能保证。而灰色区域里最多有多少个数呢?因为X是中位数的中位数,所以,比X大的中位数最少有 [(n/5l)* (1/2) - 2] 个(这个值也是关键),这里减2是因为要去除X本身,第二呢,还要去除一个中位数---这个中位数所在的子数组个数小于5.  所以,最坏最坏的情况,第K大的值不在灰色区域里,那么我们就要对剩下部分进行不断的SELECT。剩余部分就是n -3 [(\lfloor n/5 \rfool) * (1/2) - 2] = O(7n/10) .

整个过程中,第1,2,4步所需时间为O(n), 注意第2步的复杂度不为O(n^2),第3步的复杂度为 T(n/5),第五步的复杂度为 T(7n/10)。

所以,复杂度的递归公式为: T(n)=  T(n/5) + T(7n/10) + O(n), 算出来以后T(n) =O(n).


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值