python adaboost的简单实现

初学adaboost,自己尝试着写了下adaboost的实现,这个实现以几个简单的数字作为训练样本,当然,这些数字是带标签的。然后尝试着使用adaboost对其分类。对于10个带标签的数字,分类他们只需要3个左右的弱分类器级联,组成一个强分类器就可以完全正确的分类。如果代码本身没有bug的话,adaboost的表现的确惊艳。 另外,pathon也是初学,很多的编程思路和c,c++类似,总之,各方面...
阅读(49) 评论(0)

python 计算积分图和haar特征

import cv2 import numpy as np import matplotlib.pyplot as pltdef integral(img): integ_graph = np.zeros((img.shape[0],img.shape[1]),dtype = np.int32) for x in range(img.shape[0]): sum_cl...
阅读(42) 评论(0)

python 计算联通区域

对于这样的图片: 抠出其中的黑色区域,效果如下: import cv2 import numpy as np import matplotlib.pyplot as plt import timedef findUnicomArea(img): #先二值化 ret,threshold = cv2.threshold(img,128,255,cv2.THRESH_BINARY)...
阅读(67) 评论(0)

TimePicker和DatePicker修改文字颜色

使用TimePicker和DatePicker的时候,发现不能设置二者的文字颜色,颜色总是黑色,找来找去也找到设置文字颜色的接口,最终google到了结果,发现很好使,特做记录。 <TimePicker android:theme="@style/MyTimePicker" android:id="@+id/sys...
阅读(90) 评论(0)

opencv_traincascade训练人脸检测

生成样本: opencv_createsamples -vec F:\work\ml\apple-rec\data\pos.vec -info F:\work\ml\apple-rec\data\pos\pos.txt -bg F:\work\ml\apple-rec\data\neg\neg.txt -w 80 -h 80 -num 38 训练 opencv_traincascade -...
阅读(222) 评论(0)

Android息屏与亮屏

最近的项目要求apk能在空闲一会后让屏幕熄灭,检测到有用户到来(距离传感器触发)后点亮屏幕。百度了一大堆发现很多都不靠谱,google了一会才勉强找到一种能满足需求的方法,说勉强是因为这种方法需要到系统设置中给该app设备管理的权限,这使得熄屏与亮屏这样看似简单的功能显得繁琐了起来。 废话不多说,实现起来还是蛮简单的,源码如下: AndroidScreenOnAndOff息屏: priva...
阅读(457) 评论(0)

Android自定义TitleBar/ActionBar

一开始我便很困惑,TitleBar和ActionBar是什么关系? 我们知道: ActionBar是在android3.3之后推出使用的android:theme="@android:style/Theme.NoTitleBar.Fullscreen" android:theme="@android:style/Theme.Holo.NoActionBar.Fullscreen"...
阅读(216) 评论(0)

Android 自定义View-旋转小按钮

呃,什么是旋转小按钮?上图: 自定义这个View的原因是我需要一个能点击一下就能旋转显示正在刷新的小按钮,等刷新结束后在使它停止旋转并恢复到初始状态,并且这个View的字体大小,字体颜色,进度条的颜色等都可以自由配置。 自定义View包含以下几步: 1、自定义View的属性 2、在XML布局文件中使用自定义属性 2、在View的构造方法中获得我们配置的属性 3、重写onMesure...
阅读(296) 评论(0)

使用cmake构建工程

之前在linux下做项目的时候,都要自己手动的写Makefile来编译项目。后来,做Android jni开发后,发现Android studio默认的c/c++编译的工具是cmake,一开始对语法丝毫不动,查了一下资料后慢慢有了一些认识,这才发现cmake确实比写Makefile要方便多了。cmake需要较少的信息,就能为项目生成非常完成的Makefile系统,省去了大量需要手工编写脚本的工作。最...
阅读(252) 评论(0)

深度学习五:tensorboard使用记录(windows)

TensorBoard 的可视化工具,可以用来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。 tensorBoard的使用设计如下几个函数:第一、创建一个事件文件summary_waiter = tf.summary.FileWriter("log",tf.get_default_graph())log是事件文件所在的目录,这里是工程目录下的log目录。第二个参数是...
阅读(1796) 评论(0)

深度学习四:tensorflow-使用卷积神经网络识别手写数字

当你安装了tensorflow后,tensorflow自带的教程演示了如何使用卷积神经网络来识别手写数字。代码路径为tensorflow-master\tensorflow\examples\tutorials\mnist\mnist_deep.py。 为了快速测试该程序,我提前将需要的mnist手写数字库下载到了工程目录(我在pycharm中新建了工程,并把mnist_deep.py中的代码拷贝...
阅读(901) 评论(0)

深度学习三:tensorflow,训练一个神经元

初学tensorflow,我做了一个无聊的尝试。构建一个只有两个输入,一个输出的升经网络,然后训练它。我的目标是,我给他指定一个输入,比如x1=x2=1,我期望y能输出0,所以我不断的输入x1=x2=1,然后不断的训练它,等训练一万次以后,y的输出应该非常接近0。然后我可以调整期望,比如期望y能输出0.3,然后再训练一万次,y的输入应该能非常接近0.3才行。 下面是程序和实验结果:...
阅读(597) 评论(0)

深度学习二:自己写java代码,识别手写数字

上一节我们自己写代码训练了只有一个神经元的反相器,它虽然只有一点点代码,但却让我们加深了梯度下降算法和反向传播算法的理解。只要勇敢的迈出这一步后,我们就可以勇敢的尝试它:深度学习中的hello wold–识别手写数字。只有自己写过的代码,才能完全的理解它的用意,不管它多烂,多糟糕,它确是完全属于你的东西。在训练处反相器以后,我开始大胆的尝试自己写一个全连接的神经网络,来训练手写数字。这并不难,也不需...
阅读(1624) 评论(3)

深度学习一:自己写java代码,训练一个神经元

神经网络与深度学习这本书是我学习深度学习的启蒙教材,感兴趣可以到链接出下载。通过一段时间的学习,感觉基本理解了梯度下降算法和反向传播算法,于是尝试着自己写代码来实现神经网络。一开始总是很难的,所以我设计了个非常简单的目标,训练一个神经元。比如我给他输入1,我期望它输出0,这就是一个反相器。我希望它能做到这一点,所以我对他进行训练。 训练一个神经元能简化梯度下降算法和反向传播算法的实现,也能帮助我们...
阅读(1361) 评论(0)

图像处理-神奇的卷积核

关于卷积的理论这里就不啰嗦了。最近初步学习图像图例,使用java写点个对图像进项卷积操作的代码,实验的过程中感觉颇为惊奇,原来觉得高深的图像的锐化、浮雕、边缘检测等技术,原来用简单的卷积就可以轻松实现。 我首先将一副彩色的图像使用photoshop将其转换为灰度的raw格式,这简化了程序。转化后的图像如图所示: 接下来要对该图像做卷积操作,下面的类中只有一个静态方法,它能对raw格式灰度图像数据...
阅读(1364) 评论(2)
98条 共7页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:193809次
    • 积分:2944
    • 等级:
    • 排名:第13218名
    • 原创:97篇
    • 转载:0篇
    • 译文:1篇
    • 评论:95条
    最新评论