文本挖掘之降维之特征抽取之主成分分析(PCA)

原创 2016年03月02日 10:49:22

PCA(主成分分析)

作用:

1、减少变量的的个数

2、降低变量之间的相关性,从而降低多重共线性。

3、新合成的变量更好的解释多个变量组合之后的意义

PCA的原理:

样本X和样本Y的协方差(Covariance):

协方差为正时说明X和Y是正相关关系,协方差为负时X和Y是负相关关系,协方差为0时X和Y相互独立。

Cov(X,X)就是X的方差(Variance).

当样本是n维数据时,它们的协方差实际上是协方差矩阵(对称方阵),方阵的边长是。比如对于3维数据(x,y,z),计算它的协方差就是:

,则称是A的特征值,X是对应的特征向量。实际上可以这样理解:矩阵A作用在它的特征向量X上,仅仅使得X的长度发生了变化,缩放比例就是相应的特征值

当A是n阶可逆矩阵时,A与P-1Ap相似,相似矩阵具有相同的特征值。

特别地,当A是对称矩阵时,A的奇异值等于A的特征值,存在正交矩阵Q(Q-1=QT),使得:

对A进行奇异值分解就能求出所有特征值和Q矩阵。

     D是由特征值组成的对角矩阵

由特征值和特征向量的定义知,Q的列向量就是A的特征向量。

实现步骤:


具体实例:

首先我们有N个P维的向量要区分,X1,X2...Xn。P比较大,则处理所有向量的数据量较大,我们将其降至d维(d<P)。首先构造矩阵S=[X1,X2...Xn],算出协方差矩阵C(P维方阵),求出C的特征值T和特征向量V。将特征值按从大到小排列取出前d个特征值,并将这些特征值对应的特征向量构成一个投影矩阵L。使用S*L则得到降维后的提出主成分的矩阵。下面附上自己做的小实验。

  X1 = [1,2,4]   X2 = [10,4,5]  X3 = [100,8,4]

  根据经验上述3维向量中,第一维和第二维是区分的要素且第一维比第二维区分度更大。于是我们构造矩阵S,

 1) S = [1,2,4;10,4,5;100,8,5]

  2)计算出S的协方差矩阵C = COV(S),

  C =

  1.0e+003 *

    2.9970    0.1620    0.0180
    0.1620    0.0093    0.0013
    0.0180    0.0013    0.0003

  求出协方差矩阵C的特征值T和特征向量V,[T,V] = eig(C)

 V =

   -0.0235    0.0489   -0.9985
    0.5299   -0.8464   -0.0540
   -0.8478   -0.5303   -0.0060


  T=

  1.0e+003 *

   -0.0000         0         0
         0    0.0008         0
         0         0    3.0059

  取出第3个和第2个特征值以及相对应的特征向量构成投影矩阵L(实际上可以只取第三维)

  L =

   -0.9985    0.0489
   -0.0540   -0.8464
   -0.0060   -0.5303

  使用S*L则得到新的降维后的矩阵N

  N =

   -1.1305     -3.7651
  -10.2310    -5.5481
  -100.3120   -4.5327

  则提取出了可以用于区分的二维。





版权声明:本文为博主原创文章,未经博主允许不得转载。

文本分类中的降维方法总结

引言 人们通常采用向量空间模型来描述文本向量,但是如果直接用分词算法和词频统计方法得到的特征项来表示文本向量中的各个维,那么这个向量的维度将是非常的大。 这种未经处理的文本矢量不仅给后续工作带...

PCA降维算法详解——Coursera笔记

转载:http://blog.csdn.net/a784763307/ 1. 前言  PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关...

主成分分析法原理与MATLAB实现

1:主成分分析原理: 主成分分析法是利用降维的思想,把多指标转化为少数几个综合指标(即主成分),其中每个主成分都能够反映原始变量的大部分信息,且所含信息互不重复。这种方法在引进多方面变量的同时将复杂...

机器学习系列:(七)用PCA降维

用PCA降维 本章我们将介绍一种降维方法,PCA(Principal Component Analysis,主成分分析)。降维致力于解决三类问题。第一,降维可以缓解维度灾难问题。第二,...

文本挖掘之降维技术之特征提取之因子分析(FA)

因子分析法(FA)     因子分析法是通过将原有变量内部的相互依赖关系进行数据化,把大量复杂关系归为少量的几个综合因子的统计方法。它的基本思想是通过分析各变量之间的方差贡献效果,将大的即相关性高的...

python实现Kmeans文本聚类,通过PCA降维和Matplotlib显示聚类3d三维图像

在此基础上,主要实现以下改进及结果 1.替换使用sklearn.feature_extraction.text.TfidfVectorizer,将corpus文本转换为tfidf值的svm向量。 2....

[python] Kmeans文本聚类算法+PAC降维+Matplotlib显示聚类图像

本文主要讲述以下几点: 1.通过scikit-learn计算文本内容的tfidf并构造N*M矩阵(N个文档 M个特征词); 2.调用scikit-learn中的K-me...

文本特征提取

文本挖掘模型结构示意图 1. 分词 分词实例:        提高人民生活水平:提高、高人、人民、民生、生活、活水、水平 分词基本方法:         最大匹配法、最大概率法分词、最短路径分词...

文本挖掘之降维技术之特征选择

1、为什么要进行降维处理?     目前大多数使用向量空间模型对文本表示成为向量形式,而向量的属性则有可能涉及到中文中的所有词汇,其向量的维数是非常巨大的,同时考虑到一篇文章只不过包含极少数词语(比如...

opencv笔记(9):特征降维-PCA

特征降维-PCA 在进行图像的特征提取过程中,提取的特征维数太多经常会导致特征匹配时过于复杂,大量消耗系统资源,所以需要采用特征降维的方法。所谓的特征降维就是采用一个低纬度的特征来表示高纬度。一般的,...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:文本挖掘之降维之特征抽取之主成分分析(PCA)
举报原因:
原因补充:

(最多只允许输入30个字)