关闭

[HDU 3861] The King's Problem (最小路径覆盖)

83人阅读 评论(0) 收藏 举报
分类:

HDU - 3861

将图分成若干块,满足
1. 相互联通的两个点必须在同一块
2. 同一块中的任意两点,必须能单向可达


首先先用Tarjan缩点,
然后同一块的实际上必须在一条单向的路径上
然后问题就转化为了dag上不相交的最小路径覆盖

这个问题可以转化为二分图匹配解决
建立一个二分图,原图中任意一个点 u
在二分图中都拆成两个点,X部的u点和 Y部的 u’点
原图中的任意一条边 u->v在二分图中连上 u->v’
然后原图的总点数,减去二分图的最大匹配,即为最小路径覆盖

证明如下:

对于二分图 X部的一个点 u,如果他在 Y部有一个匹配 v’
那么对于原图,则代表了选定这条边 u->v,代表 u点在原图有后继
而没有匹配的点,即没有后继的点都是某条路径的终点,
所以原图中的路径数等于 X部中没有匹配的点数
当二分图最大匹配的时候,没有后继的点数最少
此时就产生了最小路径覆盖

#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <queue>
using namespace std;
typedef pair<int,int> Pii;
typedef long long LL;
typedef unsigned long long ULL;
typedef double DBL;
typedef long double LDBL;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define Sqr(a) (a*a)

const int maxn=5e3+10, maxm=1e5+10;
struct Graph
{
    int V,E;
    int edn, *last;
    int *u, *v, *nxt;
    Graph(int a, int b):V(a),E(b)
    {
        last=new int[V];
        u=new int[E]; v=new int[E]; nxt=new int[E];
        init();
    }
    ~Graph(){delete []last;delete []u;delete []v;delete []nxt;}
    void init(){edn=0; memset(last,-1,sizeof(int)*V);}
    void adde(int tu, int tv)
    {
        u[edn] = tu;
        v[edn] = tv;
        nxt[edn] = last[tu];
        last[tu] = edn++;
    }
    void pri(){for(int i=0; i<edn; i++) printf("%d->%d\n", u[i], v[i]);}
};

struct Tarjan
{
    Graph &G;
    int dfst, dfsn[maxn], low[maxn];
    int scnt, scc[maxn];
    int skt, stak[maxn];
    bool ins[maxn];
    Tarjan(Graph &a):G(a){};
    int SCC(int);
    int dfs(int);
};

struct Hungarian
{
    Graph &G;
    int res, match[2*maxn];
    bool ins[2*maxn];
    Hungarian(Graph &a):G(a){};
    int solve(int);
    int dfs(int);
};

int N,M;
Graph graph(maxn,maxm), div_g(2*maxn,maxm);
Tarjan tarjan(graph);
Hungarian hug(div_g);

int main()
{
    #ifdef LOCAL
    freopen("in.txt", "r", stdin);
//  freopen("out.txt", "w", stdout);
    #endif

    int T;
    scanf("%d", &T);
    for(int ck=1; ck<=T; ck++)
    {
        graph.init();
        div_g.init();
        scanf("%d%d", &N, &M);
        for(int i=0; i<M; i++)
        {
            int u,v;
            scanf("%d%d", &u, &v);
            graph.adde(u,v);
        }
        N = tarjan.SCC(N);
        for(int i=0; i<graph.edn; i++)
        {
            int u=graph.u[i], v=graph.v[i];
            div_g.adde(u,v+N);
        }
//      div_g.pri();
        int mcnt = hug.solve(2*N);
        printf("%d\n", N-mcnt);
    }
    return 0;
}

int Tarjan::SCC(int n)
{
    dfst=0; CLR(dfsn); CLR(low);
    scnt=0; CLR(scc);
    skt=0; CLR(ins);

    for(int i=1; i<=n; i++) if(!dfsn[i]) dfs(i);

    int tot=G.edn;
    G.init();
    for(int e=0; e<tot; e++)
    {
        int u=G.u[e], v=G.v[e];
        if(scc[u] == scc[v]) continue;
        G.adde(scc[u],scc[v]);
    }
    return scnt;
}

int Tarjan::dfs(int u)
{
    dfsn[u] = low[u] = ++dfst;
    stak[++skt] = u;
    ins[u] = 1;

    for(int e=G.last[u]; ~e; e=G.nxt[e])
    {
        int v = G.v[e];
        if(!dfsn[v])
        {
            dfs(v);
            low[u] = min(low[u], low[v]);
        }
        else if(ins[v]) low[u] = min(low[u], low[v]);
    }

    if(low[u] == dfsn[u])
    {
        scnt++;
        while(skt)
        {
            ins[ stak[skt] ] = 0;
            scc[ stak[skt] ] = scnt;
            skt--;
            if(stak[skt+1] == u) break;
        }
    }

    return 0;
}

int Hungarian::solve(int n)
{
    res=0;
    CLR(match);
    for(int i=1; i<=n; i++)
    {
        if(!match[i])
        {
            CLR(ins);
            if(dfs(i)) res++;
        }
    }
    return res;
}

int Hungarian::dfs(int u)
{
    for(int e=G.last[u]; ~e; e=G.nxt[e])
    {
        int v=G.v[e];
        if(ins[v]) continue;
        ins[v]=1;
        if(!match[v] || dfs(match[v]))
        {
            match[v]=u;
            match[u]=v;
            return 1;
        }
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:43611次
    • 积分:2655
    • 等级:
    • 排名:第13649名
    • 原创:233篇
    • 转载:0篇
    • 译文:0篇
    • 评论:13条
    最新评论