关闭

[PKU 3046] Ant Counting (计数DP+差分加数)

83人阅读 评论(0) 收藏 举报
分类:

PKU - 3046

有 T组蚂蚁,每组有 Ni只,同组蚂蚁没有区别
问从中选出一定数量的选法有多少种


计数DP
dp[i][j]表示考虑到第 i组蚂蚁,size大小为j的选法
其中 i可以滚动数组优化掉,就变成了 dp[2][j]

然后对于每组蚂蚁,枚举只数 k,更新答案
dp[cur][j]+=dp[las][jk] 其中cur为当前状态,las为前一层状态
但是这样做会 T,所以我们不必逐个更新,可以使用差分的技巧
比如要将 jj+num[i]都加上某个值,只需在 j处加,在 j+num[i]+1处减
最后扫一遍更新即可

时间复杂度 O(AT)

#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <map>
#include <set>
#include <queue>
using namespace std;
typedef pair<int,int> Pii;
typedef long long LL;
typedef unsigned long long ULL;
typedef double DBL;
typedef long double LDBL;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define Sqr(a) ((a)*(a))

const int maxt=1e3+10, maxc=1e5+10, MOD=1e6;
int T,A,S,B;
int dp[2][maxc];
int num[maxt];

int main()
{
    #ifdef LOCAL
    freopen("in.txt", "r", stdin);
//  freopen("out.txt", "w", stdout);
    #endif

    while(~scanf("%d%d%d%d", &T, &A, &S, &B))
    {
        CLR(dp); CLR(num);
        for(int i=1; i<=A; i++)
        {
            int x;
            scanf("%d", &x);
            num[x]++;
        }
        dp[0][0]=1;
        int sum=0;
        for(int i=1; i<=T; i++)
        {
            int cur=i&1, las=(i-1)&1;
            CLR(dp[cur]);
            for(int j=0; j<=sum; j++)
            {
                int r=j+num[i]+1;
                dp[cur][j] += dp[las][j];
                dp[cur][r] -= dp[las][j];
            }
            int cnt=0;
            for(int j=0; j<=sum+num[i]+1; j++)
            {
                cnt = (cnt+dp[cur][j])%MOD;
                dp[cur][j]=cnt;
            }
            sum+=num[i];
        }
        int ans=0;
        for(int i=S; i<=B; i++) ans = (ans+dp[T&1][i]) %MOD;
        printf("%d\n", (ans+MOD)%MOD);
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:48736次
    • 积分:2719
    • 等级:
    • 排名:第13752名
    • 原创:233篇
    • 转载:0篇
    • 译文:0篇
    • 评论:13条
    最新评论