浮点数的范围和精度

转载 2015年07月10日 20:42:51

无论是单精度还是双精度在存储中都分为三个部分:

  1. 符号位(Sign) : 0代表正,1代表为负
  2. 指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储
  3. 尾数部分(Mantissa):尾数部分

1 范围

floatdouble的范围是由指数的位数来决定的。

float的指数位有8位,而double的指数位有11位,分布如下:

float

1bit(符号位)

8bits(指数位)

23bits(尾数位)

double

1bit(符号位)

11bits(指数位)

52bits(尾数位)

在数学中,特别是在计算机相关的数字(浮点数)问题的表述中,有一个基本表达法[1]

   value of floating-point = significand x base ^ exponent , with sign --- F.1
  译为中文表达即为:
   (浮点)数值 =      尾数    ×    底数 ^ 指数,(附加正负号)---------------- F.2

于是,float的指数范围为-127~128,而double的指数范围为-1023~1024,并且指数位是按补码的形式来划分的。其中负指数决定了浮点数所能表达的绝对值最小的数;而正指数决定了浮点数所能表达的绝对值最大的数,也即决定了浮点数的取值范围。

float的范围为-2^128 ~ +2^128,也即-3.40E+38 ~ +3.40E+38(2表示底数,二进制中只有0和1,要想值最大,则尾数位应全为1,即:1.1111111111111111111111,所以:1.111111... * 2*128 约等于 2^128,换成十进制就是3.40E+38。负数同理)

double的范围为-2^1024 ~ +2^1024,也即-1.79E+308 ~ +1.79E+308(double类型同理)

2 精度

floatdouble的精度是由尾数的位数来决定的。浮点数在内存中是按科学计数法(二进制的科学计数法)来存储的,其整数部分始终是一个隐含着的“1(即如果为011这种,前面的0是什么用的,就等于11),由于它是不变的,故不能对精度造成影响。

float2^23 = 8388608,一共七位,这意味着最多能有7位有效数字(第七位可能由它的后面一位做了舍入操作),但绝对能保证的为6位,也即float的精度为6~7位有效数字;

double2^52 = 4503599627370496,一共16位,同理,double的精度为15~16位。

原文链接

相关文章推荐

关于浮点数的精度与取值范围的问题

作者: jillzhang     联系方式:jillzhang@126.com     本文为原创,转载请保留出处以及作者, 谢谢     C语言和C#语言中,对于浮点类型的数据采用单精度类...

Java 浮点数 float和double类型的表示范围和精度

隐约记得,浮点数判断大小好像有陷阱,因为底层的二进制数不能精确表示所有的小数。有事后会产生让人觉得莫名其妙的事情。...

Java 浮点数float和double类型的表示范围和精度

转自:http://blog.csdn.net/zq602316498/article/details/41148063?utm_source=tuicool&utm_medium=referral ...

Java 浮点数 float和double类型的表示范围和精度

隐约记得,浮点数判断大小好像有陷阱,因为底层的二进制数不能精确表示所有的小数。有时候会产生让人觉得莫名其妙的事情。 如在Java中, 0.99999999f==1f //true ...

Java中解决浮点数精度的问题

转载于:https://my.oschina.net/roll1987/blog/753979 问题描述 在项目中用Java做浮点数计算时,发现对于4.015*100这样的计算,结果不是预...

关于浮点数的精度问题

  • 2013年11月03日 14:30
  • 39KB
  • 下载

C++ 字符串转换为浮点数时的精度问题

#include /*库文件包含*/ #include /*用于字符串操作*/ #include /*用于exit函数*/ /************************************...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:浮点数的范围和精度
举报原因:
原因补充:

(最多只允许输入30个字)