Bellman-Ford——C++实现版

原创 2015年11月18日 12:34:19
// Bellman_Ford.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <iostream>
#include <stack>
#define MAX_VALUE 1000
using namespace std;

struct Edge{
	int Begin;
	int End;
	int Weight;
	int Pre;
};
struct MGraph
{
	Edge edges[MAX_VALUE];
	int iVertexCount, iEdageCount;
};
void ReadDate(MGraph *mGraph, int *iBegin, int *iEnd);
bool Bellman_Ford(MGraph *mGraph, int *pArrDis, int *pArrPath, int iBegin);
void PrintResult(int *pArrDis, int *pArrPath, int iBegin, int iEnd);

int main()
{
	int iBegin, iEnd;
	int *pArrPath = new int[MAX_VALUE];
	int *pArrDis = new int[MAX_VALUE];
	MGraph mGraph;
	ReadDate(&mGraph, &iBegin, &iEnd);
	Bellman_Ford(&mGraph, pArrDis, pArrPath, iBegin);
	PrintResult(pArrDis, pArrPath, iBegin, iEnd);
	system("pause");
	return 0;
}

void ReadDate(MGraph *mGraph, int *iBegin, int *iEnd){
	//cout << "请输入顶点数量" << endl;
	//cin >> mGraph->iVertexCount;
	//cout << "请输入邻接矩阵数据:" << endl;
	//for (int iRow = 1; iRow <= mGraph->iVertexCount; iRow++){
	//	for (int iCol = 1; iCol <= mGraph->iVertexCount; iCol++){
	//		cin >> mGraph->edges[iRow][iCol];
	//	}
	//}

	cout << "请输入顶点数和边数" << endl;
	cin >> mGraph->iVertexCount >> mGraph->iEdageCount;

	cout << "请输入连通边及权重" << endl;
	for (int i = 1; i <= mGraph->iEdageCount; i++){
		cin >> mGraph->edges[i].Begin >> mGraph->edges[i].End >> mGraph->edges[i].Weight;
	}

	cout << "请输入查询的起点和终点" << endl;
	cin >> *iBegin >> *iEnd;
}

bool Bellman_Ford(MGraph *mGraph, int *pArrDis, int *pArrPath, int iBegin){

	for (int i = 0; i <= mGraph->iVertexCount; i++){
		pArrDis[i] = MAX_VALUE;
	}
	for (int i = 0; i <= mGraph->iVertexCount; i++){
		pArrPath[i] = -1;
	}
	pArrDis[iBegin] = 0;
	for (int i = 1; i <= mGraph->iVertexCount; i++){
		bool flag = true;
		for (int j = 1; j <= mGraph->iEdageCount; j++){
			if (pArrDis[mGraph->edges[j].End] > pArrDis[mGraph->edges[j].Begin] + mGraph->edges[j].Weight){
				pArrDis[mGraph->edges[j].End] = pArrDis[mGraph->edges[j].Begin] + mGraph->edges[j].Weight;
				pArrPath[mGraph->edges[j].End] = mGraph->edges[j].Begin;
				flag = false;
			}
		}
		if (flag){
			break;
		}
		if (i == mGraph->iVertexCount){
			return false;
		}
	}
	return true;
}

void PrintResult(int *pArrDis, int *pArrPath, int iBegin, int iEnd){

	cout << "从" << iBegin << "开始到" << iEnd << "的最短路径长度为";
	cout << pArrDis[iEnd] << endl;
	cout << "所经过的最短路径节点为:";

	stack<int> stackVertices;
	int k = iEnd;
	do{
		stackVertices.push(k);
		k = pArrPath[k];
	} while (k != pArrPath[k] && k != -1);
	cout << stackVertices.top();
	stackVertices.pop();

	unsigned int nLength = stackVertices.size();
	for (unsigned int nIndex = 0; nIndex < nLength; nIndex++)
	{
		cout << " -> " << stackVertices.top();
		stackVertices.pop();
	}
	cout << endl;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

单源最短路径Bellman_Ford算法C++实现

// 单源最短路径Bellman_Ford算法.cpp : Defines the entry point for the console application. // #include "st...

最短路径算法—Bellman-Ford(贝尔曼-福特)算法分析与实现(C/C++)

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短...

算法学习 - Bellman-Ford(贝尔曼福特)算法(C++实现)

BellmanFord算法 优点缺点 实现BellmanFord算法Bellman-Ford算法是一个单源点最短路径算法,这个算法的目的就是找到整个图,到起始节点(自己定的)最短的路径和路径长度。优点...

hdu(2544)——最短路(邻接表+bellman-ford使用队列优化)

又一次做了最短路。。只不过这回使用邻接表写的。。 一开始wa了好久。。 无向图建立邻接表和有向图的区别就是就是要把两边都加进去就好啦。 #include #include #include #in...

Bellman-Ford——解决负权边(求某点到所有点的最短距离)

Bellman-Ford与dijkstra一样 都是求某点到所有点的最短距离 先说一下Bellman-Ford的思路:将m条变全部枚举(假设第i条边连接的点是u[i].v[i])判断v[i]到...

带负权的最短路bellman_ford——POJ 3259 Wormholes题解

Description While exploring his many farms, Farmer John has discovered a number of amazing wormho...

最短路径——Bellman_Ford算法

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短...

ACM暑期集训——专题二[最短路Bellman-Ford算法]

#include #include using namespace std; int map[1002][1002]={0}; struct side{ int x,y,v; }; int ...

边上权值为任意值的单源最短路径问题——Bellman--Ford算法

Bellman—Ford算法
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)