Bellman-Ford——C++实现版

原创 2015年11月18日 12:34:19
// Bellman_Ford.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <iostream>
#include <stack>
#define MAX_VALUE 1000
using namespace std;

struct Edge{
	int Begin;
	int End;
	int Weight;
	int Pre;
};
struct MGraph
{
	Edge edges[MAX_VALUE];
	int iVertexCount, iEdageCount;
};
void ReadDate(MGraph *mGraph, int *iBegin, int *iEnd);
bool Bellman_Ford(MGraph *mGraph, int *pArrDis, int *pArrPath, int iBegin);
void PrintResult(int *pArrDis, int *pArrPath, int iBegin, int iEnd);

int main()
{
	int iBegin, iEnd;
	int *pArrPath = new int[MAX_VALUE];
	int *pArrDis = new int[MAX_VALUE];
	MGraph mGraph;
	ReadDate(&mGraph, &iBegin, &iEnd);
	Bellman_Ford(&mGraph, pArrDis, pArrPath, iBegin);
	PrintResult(pArrDis, pArrPath, iBegin, iEnd);
	system("pause");
	return 0;
}

void ReadDate(MGraph *mGraph, int *iBegin, int *iEnd){
	//cout << "请输入顶点数量" << endl;
	//cin >> mGraph->iVertexCount;
	//cout << "请输入邻接矩阵数据:" << endl;
	//for (int iRow = 1; iRow <= mGraph->iVertexCount; iRow++){
	//	for (int iCol = 1; iCol <= mGraph->iVertexCount; iCol++){
	//		cin >> mGraph->edges[iRow][iCol];
	//	}
	//}

	cout << "请输入顶点数和边数" << endl;
	cin >> mGraph->iVertexCount >> mGraph->iEdageCount;

	cout << "请输入连通边及权重" << endl;
	for (int i = 1; i <= mGraph->iEdageCount; i++){
		cin >> mGraph->edges[i].Begin >> mGraph->edges[i].End >> mGraph->edges[i].Weight;
	}

	cout << "请输入查询的起点和终点" << endl;
	cin >> *iBegin >> *iEnd;
}

bool Bellman_Ford(MGraph *mGraph, int *pArrDis, int *pArrPath, int iBegin){

	for (int i = 0; i <= mGraph->iVertexCount; i++){
		pArrDis[i] = MAX_VALUE;
	}
	for (int i = 0; i <= mGraph->iVertexCount; i++){
		pArrPath[i] = -1;
	}
	pArrDis[iBegin] = 0;
	for (int i = 1; i <= mGraph->iVertexCount; i++){
		bool flag = true;
		for (int j = 1; j <= mGraph->iEdageCount; j++){
			if (pArrDis[mGraph->edges[j].End] > pArrDis[mGraph->edges[j].Begin] + mGraph->edges[j].Weight){
				pArrDis[mGraph->edges[j].End] = pArrDis[mGraph->edges[j].Begin] + mGraph->edges[j].Weight;
				pArrPath[mGraph->edges[j].End] = mGraph->edges[j].Begin;
				flag = false;
			}
		}
		if (flag){
			break;
		}
		if (i == mGraph->iVertexCount){
			return false;
		}
	}
	return true;
}

void PrintResult(int *pArrDis, int *pArrPath, int iBegin, int iEnd){

	cout << "从" << iBegin << "开始到" << iEnd << "的最短路径长度为";
	cout << pArrDis[iEnd] << endl;
	cout << "所经过的最短路径节点为:";

	stack<int> stackVertices;
	int k = iEnd;
	do{
		stackVertices.push(k);
		k = pArrPath[k];
	} while (k != pArrPath[k] && k != -1);
	cout << stackVertices.top();
	stackVertices.pop();

	unsigned int nLength = stackVertices.size();
	for (unsigned int nIndex = 0; nIndex < nLength; nIndex++)
	{
		cout << " -> " << stackVertices.top();
		stackVertices.pop();
	}
	cout << endl;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

算法学习 - Bellman-Ford(贝尔曼福特)算法(C++实现)

BellmanFord算法 优点缺点 实现BellmanFord算法Bellman-Ford算法是一个单源点最短路径算法,这个算法的目的就是找到整个图,到起始节点(自己定的)最短的路径和路径长度。优点...

【C++】【啊哈!算法】Bellman

/* 5 5 2 3 2 1 2 -3 1 5 5 4 5 2 3 4 3 */ #include using namespace std; int main(){ int u[...

Bellman-Ford算法详讲

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。 这时候,就需要使用其他的算法来求解最...

Dijkstra、Bellman-Ford及Spfa算法思想对比

Dijkstradijkstra算法本质上算是贪心的思想,每次在剩余节点中找到离起点最近的节点放到队列中,并用来更新剩下的节点的距离,再将它标记上表示已经找到到它的最短路径,以后不用更新它了。这样做的...
  • mmy1996
  • mmy1996
  • 2016年08月16日 23:10
  • 4596

Bellman-Ford algorithm

Bellman-Ford算法能在一般的情况下解决
  • yeruby
  • yeruby
  • 2014年07月23日 21:51
  • 4565

单源最短路径之Bellman-Ford算法

今天介绍一种计算单源最短路径的算法Bellman-Ford算法,对于图G=(V,E)来说,该算法的时间复杂度为O(VE),其中V是顶点数,E是边数。Bellman-Ford算法适用于任何有向图,并能报...

关于 Bellman-Ford 与 Floyd 算法的一点感想

在四种常用的最短路算法 Dijkstra, SPFA, floyd, Bellman-Ford 中, Dijks 和 SPFA 的使用较为普遍, 对大多数人来说, 也较为熟悉. 然而, floyd 与...
  • KenxHe
  • KenxHe
  • 2016年11月18日 07:49
  • 769

java OOM问题排查

在做服务器端开发的时候,经常会遇到服务由于内存溢出挂掉的情况,这种情况的发生一般来说是很难预期的,也比较难以重现,对于这种问题,一般可以通过记录内存溢出时候的堆信息来排查。   1、首先可以查看服...

算法学习之Bellman-Ford单源最短路问题

一.算法分析 这个算法的思路还是很清晰的,该算法以边作为主要研究对象。      首先我们考虑使用一个边,这边用邻接表类似的形式由u[i](储存起始点)v[i](储存终点)w[i](储存边长权值)...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Bellman-Ford——C++实现版
举报原因:
原因补充:

(最多只允许输入30个字)