关闭

算法7— 判断一个单链表是否有环,如果有,找出环的起始位置

265人阅读 评论(0) 收藏 举报
分类:

第一种方法是从单链表head开始,每遍历一个,就把那个node放在hashset里,走到下一个的时候,把该node放在hashset里查找,如果有相同的,就表示有环,如果走到单链表最后一个node,在hashset里都没有重复的node,就表示没有环。 这种方法需要O(n)的空间和时间。

第二种方法是设置两个指针指向单链表的head, 然后开始遍历,第一个指针走一步,第二个指针走两步,如果没有环,它们会直接走到底,如果有环,这两个指针一定会相遇。

[java] view plain copy
  1. public boolean hasLoop(Node head) {  
  2.     if (head == nullreturn false;  
  3.     //slow pointer  
  4.     Node sPointer = head.next();      
  5.     if (sPointer == nullreturn false;  
  6.     //fast pointer  
  7.     Node fPointer = sPointer.next();      
  8.     while (sPointer != null && fPointer != null) {  
  9.         if (sPointer == fPointer) return true;    
  10.         sPointer = sPointer.next();   
  11.         fPointer = fPointer.next();   
  12.         if (fPointer != null) {  
  13.             fPointer = fPointer.next();  
  14.         }  
  15.     }  
  16.         return false;  
  17. }  

当我们知道这个链表有环了,那么找出起始位置就比较简单。

[java] view plain copy
  1. /* (Step 1) Find the meeting point. This algorithm moves two pointers at 
  2. * different speeds: one moves forward by 1 node, the other by 2. They 
  3. * must meet (why? Think about two cars driving on a track—the faster car 
  4. * will always pass the slower one!). If the loop starts k nodes after the 
  5. * start of the list, they will meet at k nodes from the start of the 
  6. * loop. */  
  7. n1 = n2 = head;  
  8. while (TRUE) {  
  9.     n1 = n1->next;  
  10.     n2 = n2->next->next;  
  11.     if (n1 == n2) {  
  12.         break;  
  13.     }  
  14. }  
  15. // Find the start of the loop.  
  16. n1 = head;  
  17. while (n1 != n2) {  
  18.     n1 = n1->next;  
  19.     n2 = n2->next;  
  20. }  
  21. Now n2 points to the start of the loop.  

分析:上面的代码为何能够找到环的起始位置?

假设环的长度是 m, 进入环前经历的node的个数是 k , 那么,假设经过了时间 t,那么速度为2 的指针距离起始点的位置是:  k + (2t - k) % m = k + (2t - k) - xm . 同理,速度为1的指针距离起始点的位置是 k + (t - k) % m = k + (t - k) - ym。

如果 k + (2t - k) - xm =  k  + (t - k) - ym ,可以得到 t = m (x - y)。 那么当t 最小为m的时候,也就是说,两个指针相聚在 距离 起始点 m - k的环内。换句话说,如果把一个指针移到链表的头部,然后两个指针都以 1 的速度前进,那么它们经过 k 时间后,就可以在环的起始点相遇。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:112330次
    • 积分:2591
    • 等级:
    • 排名:第14882名
    • 原创:137篇
    • 转载:173篇
    • 译文:2篇
    • 评论:9条
    文章分类
    最新评论