四边形不等式优化DP

四边形不等式作为一种优化手段,可以加速某一些的动态规划转移。
其主要思想是利用决策变量的单调性,来减少状态转移过程中的决策,从而降低时间复杂度。
其中动态规划的转移方程会有如下的特征:
一.dp状态为二维,或者说可以表示成区间。
一般常见的形式为:

  • dp[i][j]=min(dp[i][k]+w[k+1][j]),1k<j 
  • dp[i][j]=min(dp[i][k]+dp[k+1][j]+w[i][j]),1k<j 

二.方程中同样有一个二维函数 w[i][j]  满足

  • 区间包含的单调性:若 i<i  j<j    ,则 w[i  ][j]w[i][j  ] 
  • 四边形不等式:若 i<i  j<j    ,则 w[i][j]+w[i  ][j  ]w[i][j  ]+w[i  ][j] 

通过上面两个条件,我们就可以证明 dp[i][j]  同样满足四边形不等式:

dp[i][j]+dp[i  ][j  ]dp[i][j  ]+dp[i  ][j],i<i  j<j   

定义 s[i][j]  dp[i][j]  取得最优解的时候,对应的下标。 s[i][j]  又称决策变量。
由于 dp[i][j]  满足四边形不等式,我们就可以证明 s[i][j]  有单调性:
s[i][j1]s[i][j]s[i+1][j] 


s[i1][j]s[i][j]s[i][j+1] 

这样,递推方程中的k的取值范围就能减小,从而加速状态转移过程。
而一般上,这样的优化可以使时间复杂度降低一个N,但是具体的降低程度需要严格的证明。

但是在赛场上做题的时候,如果没有时间去严格的证明上面的过程,就可以直接对决策变量打表,如果决策变量满足单调性,就可以利用单调性去优化了。

需要注意的一点是:上面给出了两个关于 s[i][j]  的单调性的描述,这两种描述对DP的过程,有着不同的影响。第一种描述要按照区间长度l从小到大递推,而第二种描述是按照i从小到大,j从大到小递推。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值