SVM核函数理解

原创 2016年08月31日 11:54:06

核函数参数的理解,不知道对不对。。。

SVM的决策函数可以理解为只依赖于输入和样本内积的一种映射,也正是这种内积计算使得SVM可以利用核技巧解决线性不可分的情况。核技巧的想法是,在学习和预测中只定义核函数,而不显示的定义映射函数。映射函数将输入空间映射到特征空间,而特征空间一般是高维的,甚至是无穷维的。

今天说两个事儿:高斯径项基核函数为什么可以映射到无穷维,以及,高斯径项基核函数里面的参数对模型有什么影响

1. 无穷维的特征空间:

一句话概括就是利用了泰勒展开。下面以二维空间为例:(图中核函数笔误:分母应该为平方项


2. 高斯核函数里面的参数对模型的影响


越小,对应的高斯函数形状越尖,越容易过拟合。可以考虑极限情况,特别特别特别小,此时,Klim(x, x') = [x = x'], 即当x=x'时,K(x, x') = 1, 当x != x'时,K(x, x') = 0,此时的高斯函数像一个脉冲函数,每一个x都是在判断新样本是不是和自己一样,所以就过拟合了!

此外,线性支持向量机引入了松弛变量和对应的惩罚参数C。C越大,对误分类惩罚越大,支持向量个数越多,模型越复杂。


SVM支持向量机高斯核调参小结

转自http://www.cnblogs.com/pinard/p/6117515.html  在支持向量机(以下简称SVM)的核函数中,高斯核(以下简称RBF)是最常用的,从理论上讲, RBF...

【模式识别】SVM核函数

以下是几种常用的核函数表示:线性核(Linear Kernel)多项式核(Polynomial Kernel)径向基核函数(Radial Basis Function)也叫高斯核(Gaussian K...

SVM(支持向量机)中高斯核函数的推导证明过程

由于过程涉及到公式比较多,所以就在word上编辑了下,直接截图放上来了

svm核函数的理解和选择

特征空间的隐式映射:核函数     咱们首先给出核函数的来头:在上文中,我们已经了解到了SVM处理线性可分的情况,而对于非线性的情况,SVM 的处理方法是选择一个核函数 κ(⋅,⋅) ,通过将数据映...
  • Leonis_v
  • Leonis_v
  • 2016年02月18日 22:52
  • 25161

SVM核函数总结

SVM引入核函数有两个方面的原因,一是为了更好的拟合数据,另一个重要的原因是实现数据的线性可分。 由于一些数据集在低维空间是线性不可分的,SVM通过引入核函数实现了把特征集从低维空间到高维空间的映射...

svm常用核函数

SVM核函数的选择对于其性能的表现有至关重要的作用,尤其是针对那些线性不可分的数据,因此核函数的选择在SVM算法中就显得至关重要。对于核技巧我们知道,其目的是希望通过将输入空间内线性不可分的数据映射到...

选择支持向量机(SVM)核函数

SVM核函数通常有四种: 1. Linear 2. Polynomial 3. Gaussian (RBF) 4. Sigmoid/Logistic 不知为何,RBF最常用...

SVM学习——核函数

还记得上篇末提到的对于优化问题: }" src="http://chart.apis.google.com/chart?cht=tx&chl=max+%5cquad%5cquad%5cquad%5c...

SVM核函数

SVM关键是选取核函数的类型,主要有线性内核,多项式内核,径向基内核(RBF),sigmoid核。 1.、Linear核:主要用于线性可分的情形。参数少,速度快,对于一般数据,分类效果已经很理想...

支持向量机SVM核函数的选择(七)

支持向量机是建立在统计学习理论基础之上的新一代机器学习算法,支持向量机的优势主要体现在解决线性不可分问题,它通过引入核函数,巧妙地解决了在高维空间中的内积运算,从而很好地解决了非线性分类问题。要构造出...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:SVM核函数理解
举报原因:
原因补充:

(最多只允许输入30个字)