TensorFlow MNIST 手写数字识别之过拟合

1. 过拟合 overfitting 问题什么是过拟合呢?用实际生活中的一个例子来比喻一下过拟合现象. 说白了, 就是机器学习模型于自信. 已经到了自负的阶段了. 那自负的坏处, 大家也知道, 就是在自己的小圈子里表现非凡, 不过在现实的大圈子里却往往处处碰壁. 所以在这个简介里, 我们把自负和过拟合画上等号.学习模型可能太满足了所有的训练数据,所以导致在实际数据中误差陡增,如下图,绿的的线是过拟合...
阅读(1495) 评论(2)

TensorFlow 入门之第一个神经网络和训练 MNIST

1. 构建神经网络构建一个神经网络,用于学习神经网络的结构。 本文构建的神经网络是典型的三层神经网络,输入层、隐藏层、输出层。输入层有一个输入参数也就是有一个神经元,隐藏层定义了10个神经元,输出层有一个输出,所以也就是有一个神经元。add_layer 函数是添加一个神经层的函数。# -*- coding: utf-8 -*- # 定义一个神经层,主要用于学习 建立神经网络的结构,怎么运行,怎么优...
阅读(343) 评论(0)

tensorflow 入门

介绍TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。它是谷歌基于DistBelief进行研发的第二代人工智能学习系统。2015年11月9日,Go...
阅读(364) 评论(0)

tensorflow 语法小结

# 创建一个一行两列的矩阵 matrix1 = tf.constant([[3., 3.]]) # 创建一个两行一列的矩阵 matrix2 = tf.constant([[2.],[2.]]) # 矩阵相乘 tf.matmul(matrix1, matrix2) # 启动默认图. sess = tf.Session() result = sess.run(product) # 任务完成, 关闭会话....
阅读(231) 评论(0)
    个人资料
    • 访问:640177次
    • 积分:9011
    • 等级:
    • 排名:第2312名
    • 原创:305篇
    • 转载:34篇
    • 译文:0篇
    • 评论:209条
    博客专栏