【机器学习-斯坦福】学习笔记19——线性判别分析(Linear Discriminant Analysis)(二)

转载 2013年12月03日 10:12:57
4. 实例

      将3维空间上的球体样本点投影到二维上,W1相比W2能够获得更好的分离效果。

      clip_image002

      PCA与LDA的降维对比:

      clip_image004

      PCA选择样本点投影具有最大方差的方向,LDA选择分类性能最好的方向。

      LDA既然叫做线性判别分析,应该具有一定的预测功能,比如新来一个样例x,如何确定其类别?

      拿二值分来来说,我们可以将其投影到直线上,得到y,然后看看y是否在超过某个阈值y0,超过是某一类,否则是另一类。而怎么寻找这个y0呢?

      看

      clip_image006

      根据中心极限定理,独立同分布的随机变量和符合高斯分布,然后利用极大似然估计求

      clip_image008

      然后用决策理论里的公式来寻找最佳的y0,详情请参阅PRML。

      这是一种可行但比较繁琐的选取方法,可以看第7节(一些问题)来得到简单的答案。

5. 使用LDA的一些限制

      1、 LDA至多可生成C-1维子空间

      LDA降维后的维度区间在[1,C-1],与原始特征数n无关,对于二值分类,最多投影到1维。

      2、 LDA不适合对非高斯分布样本进行降维。

      clip_image010

      上图中红色区域表示一类样本,蓝色区域表示另一类,由于是2类,所以最多投影到1维上。不管在直线上怎么投影,都难使红色点和蓝色点内部凝聚,类间分离。

      3、 LDA在样本分类信息依赖方差而不是均值时,效果不好。

      clip_image011

      上图中,样本点依靠方差信息进行分类,而不是均值信息。LDA不能够进行有效分类,因为LDA过度依靠均值信息。

      4、 LDA可能过度拟合数据。

6. LDA的一些变种

1、 非参数LDA

      非参数LDA使用本地信息和K临近样本点来计算clip_image013,使得clip_image013[1]是全秩的,这样我们可以抽取多余C-1个特征向量。而且投影后分离效果更好。

2、 正交LDA

      先找到最佳的特征向量,然后找与这个特征向量正交且最大化fisher条件的向量。这种方法也能摆脱C-1的限制。

3、 一般化LDA

      引入了贝叶斯风险等理论

4、 核函数LDA

      将特征clip_image015,使用核函数来计算。

7. 一些问题

      上面在多值分类中使用的

      clip_image017

      是带权重的各类样本中心到全样本中心的散列矩阵。如果C=2(也就是二值分类时)套用这个公式,不能够得出在二值分类中使用的clip_image013[2]

      clip_image019

      因此二值分类和多值分类时求得的clip_image013[3]会不同,而clip_image021意义是一致的。

      对于二值分类问题,令人惊奇的是最小二乘法和Fisher线性判别分析是一致的。

      下面我们证明这个结论,并且给出第4节提出的y0值得选取问题。

      回顾之前的线性回归,给定N个d维特征的训练样例clip_image023(i从1到N),每个clip_image025对应一个类标签clip_image027。我们之前令y=0表示一类,y=1表示另一类,现在我们为了证明最小二乘法和LDA的关系,我们需要做一些改变

      clip_image029

      就是将0/1做了值替换。

      我们列出最小二乘法公式

      clip_image031

      w和clip_image033是拟合权重参数。

      分别对clip_image033[1]和w求导得

      clip_image035

      clip_image037

      从第一个式子展开可以得到

      clip_image039

      消元后,得

      clip_image041

      clip_image043

      可以证明第二个式子展开后和下面的公式等价

      clip_image045

      其中clip_image047clip_image049与二值分类中的公式一样。

      由于clip_image051

      因此,最后结果仍然是

      clip_image053

      这个过程从几何意义上去理解也就是变形后的线性回归(将类标签重新定义),线性回归后的直线方向就是二值分类中LDA求得的直线方向w。

      好了,我们从改变后的y的定义可以看出y>0属于类clip_image055,y<0属于类clip_image057。因此我们可以选取y0=0,即如果clip_image059,就是类clip_image055[1],否则是类clip_image057[1]

      写了好多,挺杂的,还有个topic模型也叫做LDA,不过名字叫做Latent Dirichlet Allocation,第二作者就是Andrew Ng大牛,最后一个他导师Jordan泰斗了,什么时候拜读后再写篇总结发上来吧。

相关文章推荐

【机器学习-斯坦福】学习笔记1 - 机器学习的动机与应用

开始看Andrew Ng的经典课程机器学习,随堂做的学习笔记 机器学习的动机与应用 工具:需正版:Matlab,免费:Octave   定义(Arthur Samuel 195...

【机器学习-斯坦福】学习笔记8 软间隔 核函数

3.1 线性不可以分 我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。...

【机器学习-斯坦福】学习笔记18——线性判别分析(Linear Discriminant Analysis)(一)

1. 问题      之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但...

机器学习: Linear Discriminant Analysis 线性判别分析

Linear discriminant analysis (LDA) 线性分类分析也是机器学习中常用的一种降维算法,与 PCA 相比, LDA 是属于supervised 的一种降维算法。PCA考虑...

线性判别分析Linear Discriminant Analysis学习心得

判别分析(Discriminant Analysis)根据研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 根据判别标准不同可以分为距离判别、Fisher判别、Bayes判别法 ...
  • GcooQ
  • GcooQ
  • 2015年07月11日 10:20
  • 459

线性判别分析(Linear Discriminant Analysis)(二)

4. 实例       将3维空间上的球体样本点投影到二维上,W1相比W2能够获得更好的分离效果。              PCA与LDA的降维对比:              PCA选择...

线性判别分析(Linear Discriminant Analysis)

动机线性判别分析(Linear Discriminant Analysis)又叫Fisher线性判别分析, 由Fisher1936年提出. 很多书把线性判别分析作为一种高斯分类器讲起, 但线性判别分析...
  • JiZhG
  • JiZhG
  • 2015年08月31日 21:08
  • 632

线性判别分析(Linear Discriminant Analysis, LDA)算法分析

LDA算法入门   一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Di...

线性判别分析(Linear Discriminant Analysis,LDA)

线性判别式分析,又称为Fisher线性判别。

线性判别分析(Linear Discriminant Analysis)

线性判别分析(Linear Discriminant Analysis) 1. 问题      之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归...
  • ffeng271
  • ffeng271
  • 2012年03月14日 17:16
  • 26869
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【机器学习-斯坦福】学习笔记19——线性判别分析(Linear Discriminant Analysis)(二)
举报原因:
原因补充:

(最多只允许输入30个字)