网络流(最大流---Edmonds-Karp算法)

原创 2015年05月31日 09:57:37
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string.h>
#include <vector>
#include <queue>
#define inf 100000000
#define N 250
using namespace std;         //poj1273  hdu1532 网络流(最大流---Edmonds-Karp算法)
int map[N][N], flow[N][N], a[N], p[N];  //flow[u][v]表示从u到v的流量,a记录的是s->e这条线路中的最小残余量的值, p记录的是节点的父节点值(逆推时用到)
int EK(int s, int e)   //s为起点,e为终点
{
	queue<int> q;
	int t, u, f=0;
	memset(flow, 0, sizeof(flow));
	memset(p, 0, sizeof(p));
	while(1)
	{
		q.push(s);
		memset(a, 0, sizeof(a));
		a[s]=inf;
		while(!q.empty())  //计算出从s到e的一条可行路径
		{
			u=q.front();
			q.pop();
			for(t=1; t<=e; ++t)
			{
				if(!a[t]&&map[u][t]>flow[u][t])
				{
					p[t]=u;
					a[t]=(a[u]<map[u][t]-flow[u][t]?a[u]:map[u][t]-flow[u][t]);
					q.push(t);
				}
			}
		}
		if(a[e]==0)break;  //没有残余容量,当前流已经是最大流
		for(t=e; t!=s; t=p[t])   //更新从s到t的一条支路的流量
		{
			flow[t][p[t]]-=a[e];
			flow[p[t]][t]+=a[e];
		}
		f+=a[e];
	}
	return f;
}

int main()
{
	int n, m, t, b, c, d;
	while(scanf("%d%d", &n, &m)!=EOF)
	{
		memset(map, 0, sizeof(map));
		for(t=0; t<n; ++t)
		{
			scanf("%d%d%d", &b, &c, &d);
			map[b][c]+=d;   //防止重边
		}
		printf("%d\n", EK(1, m));
	}
	return 0;
}
	


版权声明:本文为博主原创文章,未经博主允许不得转载。

网络流之最大流(Edmonds-Karp算法和Dinic算法)

Ford-Fulkerson算法的基本思路: Ford-Fulkerson算法是求解最大流的基本算法,主要思想是,每次在残量网络中寻找一条从源到汇的路径(称为增广路径),并沿着这条路径增加流量,该算...
  • u013021513
  • u013021513
  • 2015年02月07日 14:47
  • 715

网络流 最大流 Edmonds-Karp算法

Edmonds-Karp算法,复杂度O(VE^2)。思想就是找增广路,不断增加流量。在残量(每条边上流量和容量的差)图上找一条每个边权值都为正的路(可以通过BFS,比DFS效率高),这些边权值里的最小...
  • corncsd
  • corncsd
  • 2014年01月21日 17:20
  • 721

网络流--最大流(ek算法详解)

首先要先清楚最大流的含义,就是说从源点到经过的所有路径的最终到达汇点的所有流量和 EK算法的核心 反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值de...
  • desire_ing
  • desire_ing
  • 2014年08月01日 11:09
  • 2628

[最大流]增广路算法Edmonds-Karp

最大流可以看做是把一些东西从源点s送到汇点t,可以从其他的点中转,每条边最多只能输送一定的物品,求最多可以把多少东西从s送到t,这样的问题就是最大流问题。 如图 节点1为源点,节点6位汇点 每一条...
  • baidu_35009437
  • baidu_35009437
  • 2016年07月16日 20:47
  • 1435

网络流解析——最大流EdmondsKarp算法

原理并不复杂,但存在的疑惑主要集中在反向边的引入,以下篇幅作以讲解。 首先假设一不存在TS边的单源有向加权图。 (所谓“TS边”即是指对于任一割,方向为T->S的边) 类似下图(1为S,6为T,...
  • crella___
  • crella___
  • 2017年03月31日 19:02
  • 557

网络流之最大流算法(EdmondsKarp)

求网络流有很多算法,这几天学习了两种,记录一下EK算法。 首先是网络流中的一些定义: V表示整个图中的所有结点的集合. E表示整个图中所有边的集合. G = (V,E) ,表示整个图. s表...
  • y990041769
  • y990041769
  • 2014年03月11日 18:05
  • 76976

网络流 最大流—最小割 之SAP算法 详解

首先引入几个新名词: 1、距离标号: 所谓距离标号 ,就是某个点到汇点的最少的弧的数量(即边权值为1时某个点到汇点的最短路径长度)。 设点i的标号为level[i],那么如果将满足level[i...
  • txl16211
  • txl16211
  • 2017年03月24日 16:40
  • 1328

最大流(网络流基础概念+三个算法)

下面是由一道题引发的一系列故事。。。 题目链接 http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS M...
  • x_y_q_
  • x_y_q_
  • 2016年07月22日 21:12
  • 8883

网络流之最大流(FF, EK, Dinic, SAP)

对于Gap优化成立的解释: 假如某次修改d[u]后第一次出现断层k,显然d[u]之前是等于k的,而d[u]修改的原因是修改前d[u] < d[v]+1,所以d[v] > k-1,而因为出现断层k,d[...
  • yo_bc
  • yo_bc
  • 2017年05月31日 23:50
  • 676

[网络流]最大流算法 Dinic

最近做了几道题,发现用Ek算法会超时,而事实上,Ek算法使用的机会并不多,更多的是用Dinic和ISAP算法。所以特地找了一段时间来学习、理解和编Dinic算法。 类似之前的储存方法,但稍作修改,代码...
  • baidu_35009437
  • baidu_35009437
  • 2016年07月29日 21:30
  • 2222
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:网络流(最大流---Edmonds-Karp算法)
举报原因:
原因补充:

(最多只允许输入30个字)