支持度与置信度

转载 2015年11月19日 19:36:32
支持度(Support)的公式是:Support(A->B)=P(A U B)。支持度揭示了A与B同时出现的概率。如果A与B同时出现的概率小,说明A与B的关系不大;如果A与B同时出现的非常频繁,则说明A与B总是相关的。
    置信度(Confidence)的公式式:Confidence(A->B)=P(A | B)。置信度揭示了A出现时,B是否也会出现或有多大概率出现。如果置信度度为100%,则A和B可以捆绑销售了。如果置信度太低,则说明A的出现与B是否出现关系不大。
    示例:某销售手机的商场中,70%的手机销售中包含充电器的销售,而在所有交易中56%的销售同时包含手机和充电器。则在此例中,支持度为56%,置信度为70%。

关联分析中的支持度、置信度和提升度

1.支持度(Support) 支持度表示项集{X,Y}在总项集里出现的概率。公式为: Support(X→Y) = P(X,Y) / P(I) = P(X∪Y) /...
  • sanqima
  • sanqima
  • 2015年01月15日 20:12
  • 8301

数据挖掘关联分析中的支持度、置信度和提升度

购物篮分析 购物篮数据的二元0/1表示 利用关联分析的方法可以发现联系如关联规则或频繁项集。 二元表示 每一行对应一个事务,每列对应一个项,项用二元变量表示 项在事务中出现比不出现更重要,因此项...

关联分析-Apriori算法Java实现 支持度+置信度(1)

apriori算法是最基本的发现频繁项集的算法,它的名字也体现了它的思想——先验,采用逐层搜索迭代的方法,挖掘任何可能的项集,k项集用于挖掘k+1项集。 先验性质 频繁项集的所有非空子集也...

关联分析中的支持度、置信度和提升度什么意思?

关联分析中的支持度、置信度和提升度1.支持度(Support)支持度表示项集{X,Y}在总项集里出现的概率。公式为:Support(X→Y) = P(X,Y) / P(I) = P(X∪Y) / P(...
  • HHTNAN
  • HHTNAN
  • 2016年12月27日 10:45
  • 496

关联分析-Apriori算法Java实现 支持度+置信度(2)

=========补充了关联规则的生成======== 比想象的要麻烦一点 关联规则可以是双向的,confidence(A-->B)=P(A|B)=support(A&B)/support(A)...

R第六问 关联分析中的支持度、置信度和提升度

1.支持度(Support)    支持度表示项集{X,Y}在总项集里出现的概率。公式为:             Support(X→Y) = P(X,Y) / P(I) = P(X∪Y) ...

数据挖掘关联分析中的支持度、置信度和提升度

购物篮分析 购物篮数据的二元0/1表示 利用关联分析的方法可以发现联系如关联规则或频繁项集。 二元表示 每一行对应一个事务,每列对应一个项,项用二元变量表示 项在事务中出现比不出...

置信度传播算法

  • 2015年07月26日 11:50
  • 538KB
  • 下载

置信度传播算法

  • 2016年05月19日 20:08
  • 538KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:支持度与置信度
举报原因:
原因补充:

(最多只允许输入30个字)