关闭

B树和hash的区别与联系

132人阅读 评论(0) 收藏 举报
分类:

关系型数据库中,索引大多采用B/B+树来作为存储结构,而全文搜索引擎的索引则主要采用hash的存储结构,这两种数据结构有什么区别?


hash结构的特点:检索效率非常高,索引的检索可以一次到位,O(1)。B树需要从根节点到枝节点,最后才能到叶节点进行多次I/O操作,所以hash的效率远远高于B树的效率。


那么为什么数据库索引还是用B树结构呢?

1、hash索引仅满足“=”、“IN”和“<=>”查询,不能使用范围查询

因为hash索引比较的是经常hash运算之后的hash值,因此只能进行等值的过滤,不能基于范围的查找,因为经过hash算法处理后的hash值的大小关系,并不能保证与处理前的hash大小关系对应。

2、hash索引无法被用来进行数据的排序操作

由于hash索引中存放的都是经过hash计算之后的值,而hash值的大小关系不一定与hash计算之前的值一样,所以数据库无法利用hash索引中的值进行排序操作。

3、对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。

4、Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。

对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。

(因此:键值重复率低的适合用B树索引)


hash相当于把key通过hash函数计算,得到key的hash值,再用这个hash值做指针,查找hash表中是否存在key,如果存在就返回 key所对应的value,选定一个好的hash函数很重要,好的hash函数可以使计算出的hash值分布均匀,降低冲突,只有冲突减小了,才会降低 hash表的查找时间。


b-tree完全基于key的比较,和二叉树相同的道理,相当于建个排序后的数据集,使用二分法查找算法,实际上也非常快,而且受数据量增长影响非常小。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:74937次
    • 积分:1962
    • 等级:
    • 排名:千里之外
    • 原创:123篇
    • 转载:36篇
    • 译文:0篇
    • 评论:7条
    文章分类
    最新评论