动态规划(状态压缩dp) --- HDU 1074 **

原创 2013年12月05日 16:52:40

Doing Homework

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4416    Accepted Submission(s): 1787


Problem Description
Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test, 1 day for 1 point. And as you know, doing homework always takes a long time. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.
 
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case start with a positive integer N(1<=N<=15) which indicate the number of homework. Then N lines follow. Each line contains a string S(the subject's name, each string will at most has 100 characters) and two integers D(the deadline of the subject), C(how many days will it take Ignatius to finish this subject's homework). 

Note: All the subject names are given in the alphabet increasing order. So you may process the problem much easier.
 
Output
For each test case, you should output the smallest total reduced score, then give out the order of the subjects, one subject in a line. If there are more than one orders, you should output the alphabet smallest one.
 
Sample Input
2 3 Computer 3 3 English 20 1 Math 3 2 3 Computer 3 3 English 6 3 Math 6 3
 

1. 分析

看到题目,马上想到的一种解法是,暴力搜索,枚举各种可能的排列方式,然后计算最小值。但是其复杂度为n!,此处n为15,那么肯定超时了。但是使用状态压缩dp可以将复杂度降低到n*2^n(因为穷举搜索没有注意到各个状态之间的转换关系,而造成重复计算)。

思路:想要用动态规划,就需要保存中间状态的结果,我们可以用一个int型数字来表示一个状态,int中的第i位表示第i个任务有没有完成,因而可以用15位来保存该问题的所有状态,又每个任务有两个状态(完成或没完成),则该问题总共有2^15个状态,可以用数组dp来保存

用dp[i]表示完成i的二进制表示所对应的任务最少需要扣掉的分数,则有:

dp[i] = min(dp[i-(1<<j)] + cost)     j=0,1,2,3,……

其中,i-(1<<j) 表示将i的第j位置为0,即表示可以从i-(1<<j)这个状态可以转换到i所表示的状态,cost表示接着(i-(1<<j))这个状态,完成第j个任务所扣掉的分数(此题目由于需要,所以dp数组中保存的是数据结构,而不是单一的整数)

在实现上述算法时,需要注意,当求dp[i]时,需要dp[i-(1<<j)]都要已经被求出,易知,i-(1<<j)<i,因此,可以从1开始往上求。(注意求值顺序)

2. AC代码

#include <iostream>
#include <cstring>
using namespace std;

#define COURSE_NUM 15
#define MAX 0x7FFF

struct Course {
    int deadline;
    int time;
    char name[101];
} course[COURSE_NUM];

struct Node {
    int pre;
    int cost;
    int cur_time;
} dp[MAX];

int main() {
	int case_num;
	cin >> case_num;
	while (case_num--) {
        memset(dp, 0, sizeof(dp));
        memset(course, 0, sizeof(course));

	    int n;
	    cin >> n;
	    //for (int i=1; i<=n; i++)
	    for (int i=0; i<n; ++i)
            cin >> course[i].name >> course[i].deadline >> course[i].time;

        int state_num = 1<<n;
        for (int i=1; i<state_num; ++i) {
            for (int j=0; j<n; ++j) {
                if (i&(1<<j)) {
                    //int pre = i&(^(1<<j));
                    int pre = i-(1<<j);
                    //int finished_time = dp[pre].cur_time + course[i].time;
                    int finished_time = dp[pre].cur_time + course[j].time;
                    //int cost = finished_time - course[i].deadline;
                    int cost = finished_time - course[j].deadline;
                    if (cost < 0) cost = 0;
                    cost += dp[pre].cost;
                    // j从零开始,表示后做序号小的课程,而题目要求相反
                    // if (dp[i].cur_time==0 || cost < dp[i].cost) {
                    if (dp[i].cur_time==0 || cost <= dp[i].cost) {
                        dp[i].cur_time = finished_time;
                        dp[i].cost = cost;
                        dp[i].pre = j;
                    }
                }
            }
        }

        cout << dp[state_num-1].cost << endl;
        int a[COURSE_NUM];
        int tmp = state_num-1;
        int index = 0;
        while(tmp) {
            a[index++] = dp[tmp].pre;
            tmp = tmp-(1<<dp[tmp].pre);
        }
        while (index>0)
            cout << course[a[--index]].name << endl;
	}
	return 0;
}

hdu1074动态规划状态压缩

题意:家庭作业,告诉你家庭作业名字,所用时间,最后期限

HDU 1074 动态规划,状态压缩

题目就不再说了,我当初想了很久,怎么去
  • Moyiii
  • Moyiii
  • 2014年10月08日 16:52
  • 377

hdu1074(集合上的动态规划 状态压缩)

这是一道好题,是一道状态压缩DP 有n门功课 ,共有1 代码如下: #include #include #include #include #include #include #include #in...

动态规划之状态压缩dp入门

以下摘抄自qxAi的动态规划自状态压缩dp入门 状态压缩动态规划(简称状压dp)是一类典型的动态规划,通常使用在小规模求解中,因为复杂度是指数级别。 状压dp经常用二进制表示相关状态,首先介绍位运...

【状态压缩】【动态规划】状压DP复习

多条回路问题 hdu1693 Eat the Trees /*********************************\ * @prob: hdu1693 Eat...
  • Whjpji
  • Whjpji
  • 2012年06月19日 21:18
  • 1918

基于连通性状态压缩的动态规划--【插头DP】模板超级详细解释

断断续续卡了本公举三天的插头dp终于搞完了,貌似好多网友也都是学了好多天才搞懂的,特别用成就感,作为一个模板160+行的dp也是醉了 首先一定要看陈丹琪的论文!一个高中女孩能让许多大老爷们为...

Mondriaan's Dream(DP-之状态压缩的动态规划poj2411)

http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MS   Memory Limit: ...
  • JHC23
  • JHC23
  • 2013年04月17日 20:26
  • 693

sdoi2009 [动态规划 状态压缩DP] 学校食堂

背景 飘逸的EWF组合~ 描述 小F的学校在城市的一个偏僻角落,所有学生都只好在学校吃饭。学校有一个食堂,虽然简陋,但食堂大厨总能做出让同学们满意的菜肴。当然,不同的人口味也不一定相同,但每个...

kuangbin求带飞DP1 Doing HomeWork(动态规划+状态压缩)

Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every...

UVa 11795 Mega Man's Mission(动态规划-状态压缩DP)

题目大意: T组测试数据, 每组测试数据1个n,表示要杀n个人,接下来1行表示一开始,拥有杀哪些人的武器,例如“110”表示有杀第1,2个人的武器,接下来n行,分别表示杀完第i(1...
  • wujy47
  • wujy47
  • 2014年08月03日 18:20
  • 471
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:动态规划(状态压缩dp) --- HDU 1074 **
举报原因:
原因补充:

(最多只允许输入30个字)