Catalan数计算及应用

转载 2015年07月07日 14:21:04

转载自:http://blog.csdn.net/wuzhekai1985/article/details/6764858

问题描述:卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列。输入一个整数n,计算h(n)。其递归式如下:h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2,h(0) = h(1) = 1)    该递推关系的解为:h(n)=C(2n,n)/(n+1) (n=1,2,3,...)

        思路:直接根据递归式,写出相应的算法

        参考代码:

  1. //函数功能: 计算Catalan的第n项  
  2. //函数参数: n为项数  
  3. //返回值:   第n个Catalan数  
  4. int Catalan(int n)  
  5. {  
  6.     if(n <= 1)  
  7.         return 1;  
  8.   
  9.     int *h = new int [n+1]; //保存临时结果  
  10.     h[0] = h[1] = 1;        //h(0)和h(1)  
  11.     for(int i = 2; i <= n; i++)    //依次计算h(2),h(3)...h(n)  
  12.     {  
  13.         h[i] = 0;  
  14.         for(int j = 0; j < i; j++) //根据递归式计算 h(i)= h(0)*h(i-1)+h(1)*h(i-2) + ... + h(i-1)h(0)  
  15.             h[i] += (h[j] * h[i-1-j]);  
  16.     }  
  17.     int result = h[n]; //保存结果  
  18.     delete [] h;       //注意释放空间  
  19.     return result;  
  20. }  

       应用1描述:n对括号有多少种匹配方式?

       思路:n对括号相当于有2n个符号,n个左括号、n个右括号,可以设问题的解为f(2n)。第0个符号肯定为左括号,与之匹配的右括号必须为第2i+1字符。因为如果是第2i个字符,那么第0个字符与第2i个字符间包含奇数个字符,而奇数个字符是无法构成匹配的。

       通过简单分析,f(2n)可以转化如下的递推式 f(2n) = f(0)*f(2n-2) + f(2)*f(2n - 4) + ... + f(2n - 4)*f(2) + f(2n-2)*f(0)。简单解释一下,f(0) * f(2n-2)表示第0个字符与第1个字符匹配,同时剩余字符分成两个部分,一部分为0个字符,另一部分为2n-2个字符,然后对这两部分求解。f(2)*f(2n-4)表示第0个字符与第3个字符匹配,同时剩余字符分成两个部分,一部分为2个字符,另一部分为2n-4个字符。依次类推。

       假设f(0) = 1,计算一下开始几项,f(2) = 1, f(4) = 2, f(6) = 5。结合递归式,不难发现f(2n) 等于h(n)

       应用2描述:矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?

       思路:可以这样考虑,首先通过括号化,将P分成两个部分,然后分别对两个部分进行括号化。比如分成(a1)×(a2×a3.....×an),然后再对(a1)和(a2×a3.....×an)分别括号化;又如分成(a1×a2)×(a3.....×an),然后再对(a1×a2)和(a3.....×an)括号化。

       设n个矩阵的括号化方案的种数为f(n),那么问题的解为

        f(n) = f(1)*f(n-1) + f(2)*f(n-2) + f(3)*f(n-3) + f(n-1)*f(1)。f(1)*f(n-1)表示分成(a1)×(a2×a3.....×an)两部分,然后分别括号化。

       计算开始几项,f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 5。结合递归式,不难发现f(n)等于h(n-1)

      应用3描述:一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

      思路:这个与加括号的很相似,进栈操作相当于是左括号,而出栈操作相当于右括号。n个数的进栈次序和出栈次序构成了一个含2n个数字的序列。第0个数字肯定是进栈的数,这个数相应的出栈的数一定是第2i+1个数。因为如果是2i,那么中间包含了奇数个数,这奇数个肯定无法构成进栈出栈序列。

       设问题的解为f(2n), 那么f(2n) = f(0)*f(2n-2) + f(2)*f(2n-4) + f(2n-2)*f(0)。f(0) * f(2n-2)表示第0个数字进栈后立即出栈,此时这个数字的进栈与出栈间包含的数字个数为0,剩余为2n-2个数。f(2)*f(2n-4)表示第0个数字进栈与出栈间包含了2个数字,相当于1 2 2 1,剩余为2n-4个数字。依次类推。

       假设f(0) = 1,计算一下开始几项,f(2) = 1, f(4) = 2, f(6) = 5。结合递归式,不难发现f(2n) 等于h(n)

       应用4描述:n个节点构成的二叉树,共有多少种情形?

       思路:可以这样考虑,根肯定会占用一个结点,那么剩余的n-1个结点可以有如下的分配方式,T(0, n-1),T(1, n-2),...T(n-1, 0),设T(i, j)表示根的左子树含i个结点,右子树含j个结点。

       设问题的解为f(n),那么f(n) = f(0)*f(n-1) + f(1)*f(n-2) + .......+ f(n-2)*f(1) + f(n-1)*f(0)。假设f(0) = 1,那么f(1) = 1, f(2) = 2, f(3) = 5。结合递推式,不难发现f(n)等于h(n)

       应用5描述:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

       思路:以其中一个点为基点,编号为0,然后按顺时针方向将其他点依次编号。那么与编号为0相连点的编号一定是奇数,否则,这两个编号间含有奇数个点,势必会有个点被孤立,即在一条线段的两侧分别有一个孤立点,从而导致两线段相交。设选中的基点为A,与它连接的点为B,那么A和B将所有点分成两个部分,一部分位于A、B的左边,另一部分位于A、B的右边。然后分别对这两部分求解即可。

       设问题的解f(n),那么f(n) = f(0)*f(n-2) + f(2)*f(n-4) + f(4)*f(n-6) + ......f(n-4)*f(2) + f(n-2)*f(0)。f(0)*f(n-2)表示编号0的点与编号1的点相连,此时位于它们右边的点的个数为0,而位于它们左边的点为2n-2。依次类推。

       f(0) = 1, f(2) = 1, f(4) = 2。结合递归式,不难发现f(2n) 等于h(n)

      应用6描述:求一个凸多边形区域划分成三角形区域的方法数?

      思路:以凸多边形的一边为基,设这条边的2个顶点为A和B。从剩余顶点中选1个,可以将凸多边形分成三个部分,中间是一个三角形,左右两边分别是两个凸多边形,然后求解左右两个凸多边形。

      设问题的解f(n),其中n表示顶点数,那么f(n) = f(2)*f(n-1) + f(3)*f(n-2) + ......f(n-2)*f(3) + f(n-1)*f(2)。f(2)*f(n-1)表示三个相邻的顶点构成一个三角形,那么另外两个部分的顶点数分别为2和n-1。

      设f(2) = 1,那么f(3) = 1, f(4) = 2, f(5) = 5。结合递推式,不难发现f(n) 等于h(n-2)

      应用7描述:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?

     思路:可以将持5元买票视为进栈,那么持10元买票视为5元的出栈。这个问题就转化成了栈的出栈次序数。由应用三的分析直接得到结果,f(2n) 等于h(n)

Catalan 数计算及应用

一、catalan数由来和性质 1)由来     catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。 ...
  • chlele0105
  • chlele0105
  • 2014年08月21日 22:50
  • 1395

catalan数 出栈序列

1.饭后,姐姐洗碗,妹妹把姐姐洗过的碗一个一个地放进碗橱摞成一摞。一共有n个不同的碗,洗前也是摞成一摞的,也许因为小妹贪玩而使碗拿进碗橱不及时,姐姐则把洗过的碗摞在旁边,问:小妹摞起的碗有多少种可能的...
  • shinetzh
  • shinetzh
  • 2017年03月12日 21:50
  • 266

解题笔记(37)——Catalan数计算及应用

问题描述:卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列。输入一个整数n,计算h(n)。其递归式如下:h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n...
  • wuzhekai1985
  • wuzhekai1985
  • 2011年09月10日 09:17
  • 25837

Catalan数计算及应用

问题描述:卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列。输入一个整数n,计算h(n)。其递归式如下:h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n...
  • leewon1988
  • leewon1988
  • 2013年08月24日 22:37
  • 355

卡特兰数(Catalan)及其应用

卡特兰数 卡特兰数是组合数学中一个常出现在各种计数问题中出现的数列。 卡特兰数前几项为 : C0=1,C1=1,C2=2,C3=5,C4=14,C5=42,C6=132,C7=429,C8=143...
  • doc_sgl
  • doc_sgl
  • 2013年05月03日 16:54
  • 2245

卡特兰数(Catalan Number) 算法、数论 组合~

Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。卡特兰数的前几个数 前20项为(...
  • qq_26525215
  • qq_26525215
  • 2016年05月21日 17:49
  • 6658

hdu1134 Game of Connections(Catalan数, 顺便附上大数类模板)

Catalan数公式: C[0] = 1 C[n] = C[n-1]*(4*n - 2)*(n+1)
  • yew1eb
  • yew1eb
  • 2014年02月18日 13:29
  • 1832

Catalan数的一些结论

此文章有一部分(定理,证明)来自于华中师范大学学报(自然科学版) 主要结论         定理               n个“1”和n个“0”组成的2n位的二进制数,要求从左到右扫描,“1...
  • qq_33435265
  • qq_33435265
  • 2017年04月02日 22:18
  • 392

Catalan数公式推导

 如何把下列递归公式 { f(0)=f(1)=1 } f(n)=f(0)*f(n-1-0)+f(1)*(n-1-1)+f(2)*f(n-1-2)+....+f(n-1-0)*f(0) 转化为 f(n...
  • touzani
  • touzani
  • 2007年05月15日 22:27
  • 5016

关于出栈次序及Catalan函数

在此给出几个详细介绍的网址,就不费文笔去写了。 1.百度百科中Catalan函数介绍及简单应用:http://baike.baidu.com/link?url=zNxJK_uCQX4Mmmd30j7e...
  • qq1169091731
  • qq1169091731
  • 2016年04月29日 21:54
  • 1315
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Catalan数计算及应用
举报原因:
原因补充:

(最多只允许输入30个字)