关闭

组合c(m,n)的计算方法

标签: c语言组合数
140人阅读 评论(0) 收藏 举报
分类:

问题:求解组合数C(n,m),即从n个相同物品中取出m个的方案数,由于结果可能非常大,对结果模10007即可。

方案1:
暴力求解,C(n,m)=n*(n-1)(n-m+1)/m!,n<=15

int Combination(int n, int m) 
{ 
    const int M = 10007; 
    int ans = 1; 
    for(int i=n; i>=(n-m+1); --i) 
        ans *= i; 
    while(m) 
        ans /= m--; 
    return ans % M; 
} 
int Combination(int n, int m)
{
 const int M = 10007;
 int ans = 1;
 for(int i=n; i>=(n-m+1); --i)
  ans *= i;
 while(m)
  ans /= m--;
 return ans % M;
}

方案2:
打表,C(n,m)=C(n-1,m-1)+C(n-1,m),n<=10,000

const int M = 10007; 
const int MAXN = 1000; 
int C[MAXN+1][MAXN+1]; 
void Initial() 
{ 
    int i,j; 
    for(i=0; i<=MAXN; ++i) 
    { 
        C[0][i] = 0; 
        C[i][0] = 1; 
    } 
    for(i=1; i<=MAXN; ++i) 
    { 
        for(j=1; j<=MAXN; ++j) 
        C[i][j] = (C[i-1][j] + C[i-1][j-1]) % M; 
    } 
} 
int Combination(int n, int m) 
{ 
    return C[n][m]; 
} 
const int M = 10007;
const int MAXN = 1000;
int C[MAXN+1][MAXN+1];
void Initial()
{
 int i,j;
 for(i=0; i<=MAXN; ++i)
 {
  C[0][i] = 0;
  C[i][0] = 1;
 }
 for(i=1; i<=MAXN; ++i)
 {
  for(j=1; j<=MAXN; ++j)
  C[i][j] = (C[i-1][j] + C[i-1][j-1]) % M;
 }
}
int Combination(int n, int m)
{
 return C[n][m];
}

方案3:
质因数分解,C(n,m)=n!/(m!*(n-m)!),C(n,m)=p1a1-b1-c1p2a2-b2-c2…pkak-bk-ck,n<=10,000,000

#include <cstdio>  
const int maxn=1000000; 
#include <vector>  
using namespace std; 
bool arr[maxn+1]={false}; 
vector<int> produce_prim_number() 
{ 
        vector<int> prim; 
        prim.push_back(2); 
        int i,j; 
        for(i=3;i*i<=maxn;i+=2) 
        { 
                if(!arr[i]) 
                { 
                        prim.push_back(i); 
                        for(j=i*i;j<=maxn;j+=i) 
                                arr[j]=true; 
                } 
        } 
        while(i<maxn) 
        { 
                if(!arr[i]) 
                        prim.push_back(i); 
                i+=2; 
        } 
        return prim; 
} 
//计算n!中素数因子p的指数  
int cal(int x,int p) 
{ 
        int ans=0; 
        long long rec=p; 
        while(x>=rec) 
        { 
                ans+=x/rec; 
                rec*=p; 
        } 
        return ans; 
} 
//计算n的k次方对m取模,二分法  
int pow(long long n,int k,int M) 
{ 
        long long ans=1; 
        while(k) 
        { 
                if(k&1) 
                { 
                        ans=(ans*n)%M; 
                } 
                n=(n*n)%M; 
                k>>=1; 
        } 
        return ans; 
} 
//计算C(n,m)  
int combination(int n,int m) 
{ 
        const int M=10007; 
        vector<int> prim=produce_prim_number(); 
        long long ans=1; 
        int num; 
        for(int i=0;i<prim.size()&&prim[i]<=n;++i) 
        { 
                num=cal(n,prim[i])-cal(m,prim[i])-cal(n-m,prim[i]); 
                ans=(ans*pow(prim[i],num,M))%M; 
        } 
        return ans; 
} 
int main() 
{ 
        int m,n; 
        while(~scanf("%d%d",&m,&n),m&&n) 
        { 
                printf("%d\n",combination(m,n)); 
        } 
        return 0; 
} 
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:26098次
    • 积分:1052
    • 等级:
    • 排名:千里之外
    • 原创:80篇
    • 转载:23篇
    • 译文:0篇
    • 评论:2条
    文章分类
    最新评论