Keras 浅尝之MNIST手写数字识别

转载 2015年12月20日 17:50:06

最近关注了一阵Keras,感觉这个东西挺方便的,今天尝试了一下发现确实还挺方便。不但提供了常用的Layers、Normalization、Regularation、Activation等算法,甚至还包括了几个常用的数据库例如cifar-10和mnist等等。

下面的代码算是Keras的Helloworld吧!利用MLP实现的MNIST手写数字识别:

from keras.models import Sequential  
from keras.layers.core import Dense, Dropout, Activation  
from keras.optimizers import SGD  
from keras.datasets import mnist  
import numpy

model = Sequential()  
model.add(Dense(784, 500, init='glorot_uniform')) # 输入层,28*28=784  
model.add(Activation('tanh')) # 激活函数是tanh  
model.add(Dropout(0.5)) # 采用50%的dropout

model.add(Dense(500, 500, init='glorot_uniform')) # 隐层节点500个  
model.add(Activation('tanh'))  
model.add(Dropout(0.5))

model.add(Dense(500, 10, init='glorot_uniform')) # 输出结果是10个类别,所以维度是10  
model.add(Activation('softmax')) # 最后一层用softmax

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # 设定学习率(lr)等参数  
model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode='categorical') # 使用交叉熵作为loss函数

(X_train, y_train), (X_test, y_test) = mnist.load_data() # 使用Keras自带的mnist工具读取数据(第一次需要联网)

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1] * X_train.shape[2]) # 由于mist的输入数据维度是(num, 28, 28),这里需要把后面的维度直接拼起来变成784维  
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1] * X_test.shape[2])  
Y_train = (numpy.arange(10) == y_train[:, None]).astype(int) # 参考上一篇文章,这里需要把index转换成一个one hot的矩阵  
Y_test = (numpy.arange(10) == y_test[:, None]).astype(int)

# 开始训练,这里参数比较多。batch_size就是batch_size,nb_epoch就是最多迭代的次数, shuffle就是是否把数据随机打乱之后再进行训练
# verbose是屏显模式,官方这么说的:verbose: 0 for no logging to stdout, 1 for progress bar logging, 2 for one log line per epoch.
# 就是说0是不屏显,1是显示一个进度条,2是每个epoch都显示一行数据
# show_accuracy就是显示每次迭代后的正确率
# validation_split就是拿出百分之多少用来做交叉验证
model.fit(X_train, Y_train, batch_size=200, nb_epoch=100, shuffle=True, verbose=1, show_accuracy=True, validation_split=0.3)  
print 'test set'  
model.evaluate(X_test, Y_test, batch_size=200, show_accuracy=True, verbose=1)  

屏显输出了这么一大堆东西:

ssh://shibotian@***.***.***.***:22/usr/bin/python -u /usr/local/shared_dir/local/ipython_shibotian/shibotian/code/kreas_test1/run.py  
Using gpu device 0: Tesla K40m  
Train on 42000 samples, validate on 18000 samples  
Epoch 0  
0/42000 [==============================] - 1s - loss: 0.9894 - acc.: 0.7386 - val. loss: 0.4795 - val. acc.: 0.8807  
Epoch 1  
0/42000 [==============================] - 1s - loss: 0.5635 - acc.: 0.8360 - val. loss: 0.4084 - val. acc.: 0.8889

省略。。。。。

Epoch 98  
0/42000 [==============================] - 1s - loss: 0.2838 - acc.: 0.9116 - val. loss: 0.1872 - val. acc.: 0.9418  
Epoch 99  
0/42000 [==============================] - 1s - loss: 0.2740 - acc.: 0.9163 - val. loss: 0.1842 - val. acc.: 0.9434  
test set  
0/10000 [==============================] - 0s - loss: 0.1712 - acc.: 0.9480     

Process finished with exit code 0

P.S. verbose=1时候的进度条很可爱啊

 

相关文章推荐

2.keras实现MNIST手写数字分类问题初次尝试(Python)

根据我上一篇文章下载完MNIST数据集后,下一步就是看看keras是如何对它进行分类的。 参考博客: http://blog.csdn.net/vs412237401/article/detail...

深度學習 Keras MNIST 數據可視化

學習 "机器學習 (machine learning)" 或 "深度學習 (deep learning)" 的一个重要關鍵是 "可視化 (visualization)", "可視化" 可以用在資料上、...

Keras 深度学习框架Python Example:CNN/mnist

Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU。...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-02-Example

基于Theano的深度学习(Deep Learning)框架Keras学习随笔-02-Example -- 下面来看几个例子,来了解一下Keras的便捷之处。不需要具体去研究代码的意思,只需要看一下这...

使用keras对mnist数据集做分类

只贴代码: 原始数据集下载:http://yann.lecun.com/exdb/mnist/ 代码说明:http://keras.io/getting-started/sequential-m...

Ubuntu 16.04 下keras安装和mnist测试

keras安装主要参考keras中文文档中keras安装和配置指南http://keras-cn.readthedocs.io/en/latest/for_beginners/keras_linux/...

keras加载MNIST数据集方法

由于公司网络限制,因此使用keras自带的MNIST数据集加载方法 (x_train, y_train),(x_test, y_test) = mnist.load_data() 是不可行的,所以只能...

01-Keras之用MNIST数据集训练一个DNN

01-Keras之用MNIST数据集训练一个DNN 模型code# -*- coding: utf-8 -*-'''Trains a simple deep NN on the MNIST datas...

mnist手写体数据加载碰到问题解决方案

1 直接下载mnist.pkl.gz数据文件,速度快,否则网速蛋疼,并且多次不成功,重启idle等后,还要清空keras下的mnist.gz更是很不方便,渣渣。 2 mnist.load_data(...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Keras 浅尝之MNIST手写数字识别
举报原因:
原因补充:

(最多只允许输入30个字)