行人检测(Pedestrian Detection)小结-Part III(相关论文总结报告)

行人检测特征提取_HOG和adaboost检测行人论文总结报告

一 特征提取

 1.1  矩特征  

矩特征主要表征了图像区域的几何特征,又称为几何矩, 由于其具有旋转、平移、尺度等特性的不变特征,所以又称其为不变矩。在图像处理中,几何不变矩可以作为一个重要的特征来表示物体,可以据此特征来对图像进行分类等操作。

矩特征是目前特征提取过程中效果比较理想的方法 矩实际上是图像灰度相对于图像质心的统计情况反映, Hu在1961 年首先提出了矩不变量的概念,并阐述了 7 个不变矩的公式, Li利用Fourier-Mellin 变换的不变性推导出一种构造任意阶矩不变量的方法 并指出 Hu 矩就是它的一个特例,Zernike 在 Hu 的 7 个不变矩的基础上做了进一步改进 提出了一组完备正交多项式{Vnm (x, y)},图像的 Zemike 矩实际上是图像在该正交多项式上的投影; D Shen 和 H H S 利用小波变换构造了具有旋转不变性的目标图像特征小波矩,小波矩结合了小波和矩的特性,其不仅可以得到图像的全局特征,也可以得到图像的局部特征,因而在识别相似形状的物体时有更高的识别率[1]。下面主要叙述HU矩和Zernike矩。

1,1,1 HU

几何矩是由Hu(Visual pattern recognition by moment invariants)在1962年提出的。图形的面积由其第(0, 0)阶矩表示。 而重心、 关于长轴及短轴的惯性矩和一些十分有用的矩不变量都可直接由矩得到。矩特征是图像识别中广泛使用的一种几何形状特征。矩在统计学中被用来反映随机变量的分布情况,推广到力学中,它被用作刻画空间物体的质量分布。同样的道理,如果我们将图像的灰度值看作是一个二维或三维的密度分布函数,那么矩方法即可用于图像分析领域并用作图像特征的提取。

二维连续函数 f ( x , y)的原点矩和中心矩定义如下:

其中:

对于 m ! n的数字图像 f( x , y)的( p+ q)阶原点矩和中心矩分别定义为:

中心矩能反映图像区域中的象素点相对于图像中心是如何分布的, 具有图像的平移不变性。为了更好地表示图像的尺度不变性和旋转不变性, Hu利用代数不变性得出了同时具有平移、尺度、 旋转不变性的7个不变矩组, 它们是:

其中为规一化中心矩,表达式为:

[2]

1,1,2 Zernike 矩

Zernike矩是一组正交矩,具有旋转不变性的特性,即旋转目标并不改变其模值。由于Zernike 矩可以构造任意高阶矩,所以Zernike 矩的识别效果优于其他方法。

函数 f(x, y)的 n阶 Zernike 矩定义为:

式中, *表示取共轭, Zernike 多项式 Vnm( x, y)由下式给出:

式中, n为非负整数, |m|≤n 并满足 n- |m|为偶数, 实半径多项式

Rnm( r)的定义为:

对于一幅数字图像, 积分用求和代替, 即

[3]

Zernike矩仅仅具有相位的移动。它的模值保持不变。所以可以将| A nm | 作为目标的旋转不变性特征。因为| Zn,m | =| Zn ,- m| ,所以只需计算m ≥0 的情况。

程序实7个Hu矩,编写测试函数并调试成功。将7个HU特征加到HOG的尾部进行训练和检测,效果和直接用HOG检测差不多,特征需要进行融合,直接相加效果不明显。

 

1.2 LRF(local receptive fields

Instead of manually craftinga set of features, multilayer perceptrons provide an adaptive approach forfeature extraction by means of their hidden layer, so that the features aretuned to the data during training [10]. Feed-forward neural networks with localreceptive fields (NN/LRF), introduced by Fukushima et al. [11]and later appliedto pedestrian classification byWo ¨hler and Anlauf[3],are a particularly attractive approach for classifying 2D images.In contrast tostandard multilayer perceptrons, neurons in the hidden layer are only connectedto a restricted local region of the input image, referred to as their localreceptive fields (see Fig. 3).The hidden layer is divided into a number ofbranches, with all neurons within one branch sharing the same set of weights.Each branch encodes some local image feature. Local connectivity and weight-sharingeffectively reduce the number of weights to be determined during the trainingstage, thus allowing for relatively small training sets for the (high)dimension involved.

与手工计算一个特征集不同的是,多层感知器提供一种合适的特征提取方法通过它的隐藏层,以便于特征在训练过程中调整到数据集。Fukushima提出了用LRF特征的前馈神经网络,后来被Wohler and Anlauf应用到行人分类器上,是一种特别吸引人的2维图像分类方法。与标准的多层感知器形成对比的是,在隐藏层的神经细胞仅仅与输入图像的受限局部区域,被称为局部接受域(见图三)。隐层分为多个分支,一个分支的所有的神经元共享同样的权重集。局部连通和权重共享性有效地降低了训练阶段需要确定的权重数量,从而允许相对小型的训练集得到高的尺寸。

We further investigate theconcept of LRFs by extracting the output of the hidden layer of a (oncetrained) NN/LRF as features subject to classification by generic classificationmethods (other than neural networks). Preliminary experiments have shown receptivefields of size 5X5 to be optimal, shifted at a step size of 2 pixels over theinput image of size 18 X36. The number of branches is varied within the valuesof {8; 16; 24; 32} during parameteroptimization.

我们进一步研究通过提取一个NN/LRF的隐层输出作为特征LRFs提取输出的隐层受通用分类分类方法(除了神经网络)限制的LRF的概念。初步实验显示出的接受域大小的5X5为最佳,每一步改变2个像素在大小为的18 X36输入图像。在参数优化过程中分支的数量在{8; 16; 24; 32}中变化[4]。

    我下载参考文献[4]中LRF的参考文献,这些文献中也有讲到local receptive fields的,但是也只是描述NN/LRF的应用,并没有叙述LRF的概念,如何得到的,其中有一些是讲到了local features和spatio-temporal receptive fields的,LRF多是与NN结合起来用,与我们的框架不符,可以不考虑增加LRF特征。

1.3 Edgelet特征[5][6]

Edgelet特征描述的是人体的轮廓特征,但是它描述的是人体局部轮廓的特征,包括的形状有直线、弧线等,它将人体分为几个部分来训练,比如:全身、头肩部、腿部和躯干部等,每个部分都使用adaboost算法训练一个强分类器;在分类时,利用四个部分的联合概率来判断。由于该算法采用的是人体的局部特征,所以在出现遮挡的情况下仍然有很好的表现,缺点是特征的计算比较复杂。

Wu Bo提取图像的edgelet特征用于检测静态图像中的人体,对组成人体的各个部分分别建立模型,每一个edgelet描述人体的某个部位的轮廓,然后再用adaboost算法筛选出最有效的一组edgelet来描述人的整体。

如图3.1所示,Wu Bo定义了三种edgelet,包括直线型、弧形和对称型。每一个edgelet由一组边缘点构成,是一条具有一定形状和位置的线段。对于图像中任意的位置,根据该位置是否具有和某edgelet形状相似的边缘,就可以得到一个响应值。如果边缘的形状与edgelet越相似,那么响应值就越高。

 

 

edgelet在某个位置(x,y)上的响应值可以这样计算。

这种方法分别检测窗口的局部区域,然后再综合这些区域的检测结果来做最终的判决。这类方法的优点在于能更好地处理遮挡以及行人姿势的多样性。主要问题在于,如何定义局部以及如何整合来自多个部位检测器的信息。

其中,K是点的数目。(ui ,vi)是该点在edgelet中的位置。Ie(x+ui,y+vi)是图像中对应该点的边缘强度,Ne(x+ui,y+yi),ni表示图像中(x+ui,y+vi)点的梯度的法向量和edgelet中该点的法向量的内积。

综上,可以得到edgelet相对于整体特征有其自身的优点,这种方法以检测局部为基础,在得到了各个局部的检测结果后,再分析各局部之间的相互关系来得到最终的检测结果。这种方法的优点在于能更好地处理遮挡以及行人姿势的多样性。这种方法的主要问题是,怎样定义局部和怎样整合来自多个局部位置的分类器的信息。

1.4 Shapelet特征[7]

2007年Sabzmeydani[20]提出了基于Shapelet特征的目标检测算法,其相较于Dalal提出的基于Hog特征的算法将误检率进一步降低了整整10倍。该算法最核心的思想是利用机器学习的方法自动地生成自适应的局部特征。Shapelet特征是一系列mid-level特征的集合。这些特征集中描述图像的局部区域特征,并通过Adaboost集中训练low-level的梯度信息组合构建而成。以往的物体检测算法其主要的一个缺点就是在于使用固定的特征描述模型,其弊端在于特征的形成缺乏自适应性,很多情况下可能会丢失一些具有判别力的细节信息,而机器学习往往只是利用来设定分类器的参数或者选择特征的;相对的,在基于Shapelet特征的算法中,特征本身就是通过机器学习,由很多low-level的梯度信息组合而来的,是机器学习在目标检测中更为彻底与深入的应用。

该算法的核心思想就是,两次利用Adaboost算法:第一步,着眼于(静态)图像局部,对于图像局部区域内所有的低级特征(Low-Level,如最简单的边缘梯度特征等)进行第一次的Adaboost训练,训练以后得到低级特征的加权和,即为Shapelet特征;然后,第二次使用Adaboost在所有求得的Shapelet特征中进行训练,选择最优秀的弱分类器组合而得最终的强分类器。

基于Shapelet特征的训练过程包括以下三步:

第一步,输入训练样本图片,计算每幅图像在不同方向上的梯度值,Sabzmeydani使用了{0°,45°,90°,135°}四个方向,然后进行平滑滤波。每个low-level特征包括位置、方向、以及强度大小三个信息。这些low-level的梯度值用来构建Shapelet特征。

第二步,求取Shapelet特征。在每个子窗口内,通过Adaboost选择部分区分样本类别能力优秀的部分low-level特征来构建mid-level的Shapelet特征。每个子窗口都可以以此得到一个Shapelet特征,每一个Shapelet特征都比直接的low-level特征的区分能力要强,它是子窗口内不同方向不同位置的梯度的组合。

第三步,训练最终的强分类器。单一的Shapelet特征仅仅描述图像的一个局部区域的轮廓信息,因此它的分类能力是非常有限的。我们将之前所有求得的Shapelet特征作为输入,第二次利用Adaboost进行训练来构造最终的强分类器。

Shapelet特征通过先着眼于局部的小特征集,从底层特征通过机器学习得出中层特征(Mid-Level)的方法,尝试获得更多更有用的细节信息,而无需同时考场所有的低层特征。Shapelet特征的特性:简单、低维;由目标物体学习而来,对其他类别的物体具有排他性;具有比较强的判别能力;局部同样有效:可将整体分为各部分分别提取特征[5]。

[1]史健芳 ,王 哲 ,冯登超.基于矩特征及支持向量机的图像识别.科技情报开发与经济. 2009.

[2] 魏玮,赵入宾.矩特征在铁路货车车号识别中的应用.微计算机应用.2010.

[3] 支瑞聪 阮秋琦.基于多尺度分析矩特征的人脸表情识别. 信 号 处 理.2009.

[4].S.Munder and D. Gavrila, “An Experimental Study on Pedestrian

Classification,”IEEE Trans. Pattern Analysis and Machine Intelli-

gence, vol.28, no. 11, pp. 1863-1868, Nov. 2006.

[5] 栾大勇.实时视频监控系统中的运动人体检测算法研究.2009

[6] Barron J,Fleet D,Beauchemin S.Performance of optical flowtechniques[J].InternationalJournalof Computer Vision,12(1):42-77,1994.

[7]P.Sabzmeydaniand G.Mori.Detecting pedestrians by learning shapelet features[C].In Proc.CVPR,pages1-8,2007

二 HOG和adaboost实现目标检测资料整理

   搜索到的论文有很多不是单纯的HOG结合adaboost实现目标检测,而是HOG和其他特征结合,训练检测部分有adaboost或者adaboost的改进。按照论文来源分为以下几个部分。

1  中国知网的中国优秀硕士学位论文全文数据库

1) 杨志辉.基于多尺度方向特征的行人检测算法.2009年1月  

目前对于特征的描述主要分为对色彩的处理和对轮廓的提取两方面。其

中最具有代表性的就是Viola提出的Haax一Like和Dalal采用的HOG作为物

体的特征描述子,而且在人体检测上都达到了很好的效果。本文作者受到以

上两种特征描述子的启发,把haar和hog两者结合起来MSO提出了一种新的特征一多尺度方向特征(MSO),这种新特征不仅囊括了上面两种特征各自的优点,还弥补了它们的不足。这种特征是针对特征区域的形状进行统计的,由“全部特征组合起来所形成的特征集,反映的是“图像在不同尺度上的方向特征。并且分别在SVM和AdaBoost机制下进行训练,利用训练出来的模型在视频和图片上进行行人检测,通过在公共测试集和本文自己的测试集上进行测试,并将结果与国际上其它领先算法相对比分析,实验证明了:在相同的检测标准下,使用本文所提出的理论框架,无论在运算速度上,还是在检测结果的精度上,本文算法都表现出了明显的优势。(里面包含了HOG特征提取,MSO特征获取,adaboost算法和级联分类器)

 

2)栾大勇.实时视频监控系统中的运动人体检测算法研究.2009年6月

本文采用了三帧差分方法结合Blob融合方法提取视频中的运动物体。得到了运动的区域,就要对这个区域进行分类,本文采用了基于机器学习的方法。从INRIA数据库中选取一定数目的人体样本和非人体样本,提取其Haar-like以及HOG特征,然后使用Adaboost算法训练得到人体分类器。这样就可以借助这个分类器对未知的待检测窗口进行分类,判断其是否为人体。经过测试,该系统取得了很好的的检测结果,而且速度达到了30f/s。在前人的工作基础上,本文做出了一些改进,针对三帧差分方法的缺点,提出了BLOB融合技术,对HAAR-LIKE特征进行了扩展,对待检测窗口进行多尺度的检测和对HOG特征进行降维处理,避免了使用svm训练占用大量时间。但是论文中没有明确提出Haar-like和HOG特征是如何结合起来参与训练的。(也是用到了adaboost级联分类器,有HOG特征提取和降维处理)

3)张君祥.日本车牌照的定位、分割与识别研究.2009年12月 

其中第四章讲到了AdaBoost与HOG结合的车牌初定位,这一部分中提出的Adaboost结合HOG的特征的车牌识别方法,把车牌看作一种待征识别物体。在HOG提取特征的计算中引入积分图的概念来进行计算加速。在探测窗口的设计上,采用可变大小的block,这样可以更好的提取目标的局部特征。Adaboost中的弱分类器采用线性支持向量机(SVM)。Adaboost采用5级的级联。

  4)吴贻军.基于视频序列的运动人体检测算法研究.2007.5  

第四章基于HOG特征的人体检测算法中,作者提出采用离线训练的方法,即在检测运动区域之前,预先训练好一个分类器。本文采用的是基于HoG特征的嵌套级联人体分类器,它由Adaboost学习算法训练得到。采用级连分类器的形式,将非人体在一前几级分类器中就被提前剔除,筛选可能性大的检测区域进入后一级的分类器,极大地提高检测的效率,满足了实时性的需要。这里的HOG特征用到了积分图加速HOG特征的计算。

 

5)朱文佳.基于机器学习的行人检测关键技术研究.2008.1

 第四章 基于boosted cascade的行人检测

在本章中,我们将boosted cascade应用到了行人检测中,评估了各种特征的特性,提出了hog的简化版本shog,并将hog特征的描述能力与haar特征简单快速的优点结合起来,既能避免原始的hog算法计算复杂度高,不适合实时检测的缺点,又能弥补haar特征过于简单,精度不大的缺陷。除此之外,我们提出利用加权的fisher判别来做投影,将hog特征简化为一维,利用查找表做弱分类器;并使用real adaboost取代原先的discrete adaboost,既简化了计算,又提高了性能,达到了更高的检测精度。

在特征选取上,我们提出了hog特征的简化版本shog(simple hog),并且将shog

特征与haar特征结合起来使用,这样既能利用hog特征获得良好的精度,又能利用haar特征提高检测速度,但是改进描述得还不是很具体。

 

6)李亚.基于机器学习的图像边缘检测方法的研究与应用.2009.5

第四章在构建特征向量时,主要计算了样本的Harr特征和梯度直方图(HoG)特征。在训练分类器过程中,将AdaBoost和决策树算法相结合,在提高分类器的准确率的同时降低误差率。 这里adaboost和决策树的结合与我们的程序adaboost算法很类似

 

7)黄如锦.基于二次提升方向梯度特征的目标检测算法研究.2010年5月

本文分析研究了近年来有关目标检测方面的重要文献,特别深入研究了两个最具代表性的特征描述子:Dalal提出的Hog方向梯度直方图特征和Sabzmeydani提出的Shapelet轮廓特征,它们在目标检测上的应用都达到了很优秀的效果,是目前目标检测领域中最优秀的算法之一。本文通过仔细分析了基于这两种特征的目标检测算法的优势与不足,结合机器学习中的经典算法Adaboost算法,提出了一种新的特征——二次提升的方向梯度特征(Two-StageBoosting Oriented Gradient,TSBOG)。经二次学习提升后的特征不仅囊括了上述两类特征的优点,还弥补了它们各自的不足。新特征改善了原Hog特征向量由于维数太大,造成的在SVM机制下进行训练时造成的计算量开销大的缺点,大大减少了训练时间和存储空间,同时还保持着与Hog特征相当的出色的分类能力;另外,TSBOG特征借鉴了Shapelet二次自适应学习提升底层特征的思想,是自适应的局部特征,从而提升了分类器的检测性能。其次,我们还对弱分类器进行了改进,采用实值Adaboost和查找表代替Stump进行弱分类器的训练,使弱分类器具有更强的描述力,使得检测器的性能得到进一步提高;其三,本文创新性的提出了一套特征评判标准,并把它应用到特征的预筛选中,对特征数量和训练流程进行优化。最后,为了优化检测速度,本文中借鉴直方图积分图进行特征的加速运算,使得检测速度得到了进一步的提高。

从这些硕士学位论文上可以看出,当单纯的HOG和adaboost达不到检测要求时,我们可以进行特征融合得到新的特征用去训练检测,还可以改善分类器,其中有一些提高HOG特征计算速度和分类器改进的方法值得借鉴。

 

2 中国知网的中国期刊全文数据库

   期刊全文数据库里的论文一般都是比较浅显的描述。

1) 叶林,陈岳林 ,林景亮.基于 HOG的行人快速检测.2010.11

为了更好更快速地实现对行人的检测,提出一种基于空间梯度直方图的行人检测算法。该算法在分类识别时用Boosted Cascad 算法级联结构的分类器,将那些对不包含行人信息的区域进行筛选排除,从而使信息量减少。实验结果表明,该算法在不降低检测效果的情况下明显提高了行人检测效率,具有较强的鲁棒性。叙述过于简单。

2)黄茜,顾杰峰,杨文亮.基于梯度向量直方图的行人检测.2009.11

针对 A d a b o o s t 行人检测训练非常耗时的问题, 在梯度方向直方图(HOG)特征计算上引入积分向量图, 同时对于作为adaboost 学习过程中的分类器——线性S V M, 应用序列最小优化( SMO ) 来解决其二次规划( Q P ) 问题。实验结果表明, 通过这两个方面的改进, 不仅行人检测训练检测速度得到了提升,而且取得 了令人满意的检测效果。  这个里面的SMO倒是可以借鉴。

 

  3,英文文献

1)Chi-Chen Raxle Wang,Jenn-Jier JamesLien.AdaBoost Learning for Human Detection Based on Histograms of OrientedGradients.ACCV 2007, Part I, LNCS 4843, pp. 885–895, 2007.

Abstract: We developed a novel learning-based human detectionsystem, which can detect people having different sizes and orientations, undera wide variety of backgrounds or even with crowds. To overcome the affects ofgeometric and rotational variations, the system automatically assigns thedominant orientations of each block-based feature encoding by using therectangular- and circular-type histograms of orientated gradients (HOG), whichare insensitive to various lightings and noises at the outdoor environment.Moreover, this work demonstrated that Gaussian weight and tri-linearinterpolation for HOG feature construction can increase detection performance.Particularly, a powerful feature selection algorithm, AdaBoost, is performed toautomatically select a

small set of discriminative HOG features with orientationinformation in order to achieve robust detection results. The overall computationaltime is further reduced significantly without any performance loss by using thecascade-of-rejecter structure, whose hyperplanes and weights of each stage areestimated by using the AdaBoost approach.

   这文章主要是开发了一个新颖的基于学习的行人检测系统,能够在大量不同的背景和人群中检测出不同大小和方向的行人,主体思路是HOG特征提取,adaboost级联训练,检测,这里的HOG用到了矩阵HOG和圆型HOG,这是一个新颖的地方,此外这文章还证明了在HOG计算时用高斯权重和三线性插值可以提高检测性能,这个值得借鉴。

 

 

2) Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng, “Fast Human

Detection Using a Cascade of Histrograms of OrientedGradients,”

Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol.2,

pp. 1491-1498, 2006.

 Abstract :We integrate thecascade-of-rejectors approach with the Histograms of Oriented Gradients (HOG)features to achieve a fast and accurate human detection system. The featuresused in our system are HOGs of variable-size blocks that capture salientfeatures of humans automatically. Using AdaBoost for feature selection, weidentify the appropriate set of blocks, from a large set of possible blocks. In

our system, we use the integral image representation and a rejectioncascade which significanlyspeed up the computation. For a 320 × 280 image, the system canprocess 5 to 30 frames per second depending on the density in which we scan theimage, while maintaining an accuracy level similar to existing methods.

   这篇文章行人检测系统的框架是HOG特征提取,adaboost级联训练,进而检测,文中的HOG是指IHOG(Integral Histograms of Orientated Gradients),这里求了不同大小的block的HOG特征, 并对检测性能进行了对比,还把HOG和矩特征的检测性能进行了比较。Adaboost级联属于常规级联,没有做改进。

 

3) CHI-CHEN RAXLE WANG∗,JIN-YIWU. PEDESTRIAN DETECTION SYSTEMUSING

CASCADED BOOSTING WITH INVARIANCE OF ORIENTED GRADIENTS. International Journal of Pattern Recognition and ArtificialIntelligence.Vol. 23, No. 4 (2009) 801–823

Abstract:This study presents a novel learning-based pedestrian detection systemcapable of automatically detecting individuals of differentsizes and orientations against a wide variety of backgrounds, includingcrowds, even when the individual is partially occluded. To

render the detection performance robust toward the effectsof geometric and rotational variations in the original image, thefeature extraction process is performed using both rectangular- andcircular-type blocks of various sizes and aspect ratios. The extracted blocksare rotated in accordance with their dominant orientation(s) such that all the blocksextracted from the input images are rotationally invariant. The pixels withinthe cells in each block are then voted into rectangular- and circular-type9-bin histograms of oriented gradients (HOGs) in accordance with their gradientmagnitudes and corresponding multivariate Gaussian-weighted windows. Finally,four cell-based histograms are concatenated using a tri-linear interpolationtechnique to form one 36-dimensional normalized HOG feature vector for eachblock. The experimental results show that the use of the Gaussian-weightedwindow approach and tri-linear interpolation technique in constructing the HOGfeature vectors improves the detection performance from 91%

to 94.5%. In the proposed scheme, the detection process isperformed using a cascaded detector structure in which the weak classifiersand corresponding weights of each stage are established using theAdaBoost self-learning algorithm. The experimental results reveal that thecascaded structure not only provides a better detection performance

than many of the schemes presented in the literature, but alsoachieves a significantreduction in the computational time required to classify eachinput image.

   这篇论文的行人检测框架也是HOG特征和adaboost级联训练检测,这里为了提高检测率,HOG特征提取时用到了高斯权重和三线性插值。而且还对比了矩形HOG特征和圆型HOG特征的性能,这一篇对于HOG和级联adaboost讲的还比较详细。

有一些文献涉及到了HOG和adaboost,但并不详细,在此就不详述了。

从上述论文上看,我们的行人检测的主体框架和这些论文的行人检测主体框架是一致的,差别在于两个方面:一,特征提取我们的是单一的矩形HOG特征并没有和其他特征如shapelet特征融合,没有用到高斯权重和三线性插值,也没有尝试圆型HOG特征,而有一些论文就做了一些相关工作;二,我们的分类器只是标准的adaboost级联(GAB级联),只是adaboost的弱分类器是用二叉树来实现的,而上述论文中有的adaboost分类器的弱分类器用SVM实现,有的分类器用adaboost和决策树结合来实现,有一些是标准的adaboost级联。


文档下载地址:http://download.csdn.net/detail/u012564690/8136643


  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值