opencv人脸检测(haar特征+AdaBoos分类器)(二)

转载 2015年07月08日 09:08:44

OpenCV实现人脸检测

本文介绍最基本的用OpenCV实现人脸检测的方法。

 

一.人脸检测算法原理

Viola-Jones人脸检测方法

参考文献:Paul Viola, Michael J. Jones. Robust Real-Time Face Detection[J]. International Journal of Computer Vision,2004,57(2):137-154.

该算法的主要贡献有三:

1.提出积分图像(integral image),从而可以快速计算Haar-like特征。

2.利用Adaboost学习算法进行特征选择和分类器训练,把弱分类器组合成强分类器。

3.采用分类器级联提高效率。

二.OpenCV检测原理

OpenCV中有检测人脸的函数(该函数还可以检测一些其他物体), 甚至还包含一些预先训练好的物体识别文件。

所以利用这些现成的东西就可以很快做出一个人脸检测的程序。

主要步骤为:

1.加载分类器。

用cvLoad函数读入xml格式的文件。文件在OpenCV安装目录下的“data/haarcascades/”路径下。

http://blog.csdn.net/yang_xian521/article/details/6973667推荐使用haarcascade_frontalface_atl.xml和haarcascade_frontalface_atl2.xml

2.读入待检测图像。读入图片或者视频。

3.检测人脸。

主要用的函数:

复制代码
CvSeq* cvHaarDetectObjects( 
const CvArr* image, 
CvHaarClassifierCascade* cascade, 
CvMemStorage* storage, 
double scale_factor CV_DEFAULT(1.1), 
int min_neighbors CV_DEFAULT(3), 
int flags CV_DEFAULT(0), 
CvSize min_size CV_DEFAULT(cvSize(0,0)), 
CvSize max_size CV_DEFAULT(cvSize(0,0)) 
);
复制代码

 

函数说明摘自《学习OpenCV》:
CvArr* image是一个灰度图像,如果设置了ROI,将只处理这个区域。
CvHaarClassifierCascade* cascade是前面读入的分类器特征级联。
CvMemStorage* storage 是这个算法的工作缓存。
scale_factor :算法用不同尺寸的窗口进行扫描,scale_factor是每两个不同大小的窗口之间的尺寸关系。
min_neighbors 控制误检测,因为人脸会被不同位置大小的窗口重复检测到,至少有这么多次检测,我们才认为真的检测到了人脸。
flags有四个可用的数值,它们可以用位或操作结合使用。默认值是CV_HAAR_DO_CANNY_PRUNING,告诉分类器跳过平滑区域。
min_size 指示寻找人脸的最小区域。max_size 显然应该是寻找人脸的最大区域了。。。

4.检测结果表示。

可以画个圈圈或者画个方框表示。

三.代码

#include "stdafx.h"
#include "cv.h" 
#include "highgui.h"


#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <assert.h> 
#include <math.h> 
#include <float.h> 
#include <limits.h> 
#include <time.h> 
#include <ctype.h>


#ifdef _EiC 
#define WIN32 
#endif


static CvMemStorage* storage = 0; 
static CvHaarClassifierCascade* cascade = 0;


void detect_and_draw( IplImage* image );


const char* cascade_name = 
"haarcascade_frontalface_alt.xml"; 
/*    "haarcascade_profileface.xml";*/


int main( int argc, char** argv ) 

    cascade_name = "haarcascade_frontalface_alt.xml"; 
    cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 ); 
  
    if( !cascade ) 
    { 
        fprintf( stderr, "ERROR: Could not load classifier cascade\n" ); 
        return -1; 
    } 
    storage = cvCreateMemStorage(0); 
    cvNamedWindow( "result", 1 ); 
     
    const char* filename = "Lena.jpg"; 
    IplImage* image = cvLoadImage( filename, 1 );


    if( image ) 
    { 
        detect_and_draw( image ); 
        cvWaitKey(0); 
        cvReleaseImage( &image );   
    }


    cvDestroyWindow("result"); 
  
    return 0; 
}




void detect_and_draw(IplImage* img ) 

    double scale=1.2; 
    static CvScalar colors[] = { 
        {{0,0,255}},{{0,128,255}},{{0,255,255}},{{0,255,0}}, 
        {{255,128,0}},{{255,255,0}},{{255,0,0}},{{255,0,255}} 
    };//Just some pretty colors to draw with


    //Image Preparation 
    // 
    IplImage* gray = cvCreateImage(cvSize(img->width,img->height),8,1); 
    IplImage* small_img=cvCreateImage(cvSize(cvRound(img->width/scale),cvRound(img->height/scale)),8,1); 
    cvCvtColor(img,gray, CV_BGR2GRAY); 
    cvResize(gray, small_img, CV_INTER_LINEAR);


    cvEqualizeHist(small_img,small_img); //直方图均衡


    //Detect objects if any 
    // 
    cvClearMemStorage(storage); 
    double t = (double)cvGetTickCount(); /*CV_HAAR_DO_CANNY_PRUNING*/
    CvSeq* objects = cvHaarDetectObjects(small_img, 
                                                                        cascade, 
                                                                        storage, 
                                                                        1.1, 
                                                                        2, 
                                                                        0, 
                                                                        cvSize(30,30));


    t = (double)cvGetTickCount() - t; 
    printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );


    //Loop through found objects and draw boxes around them 
    for(int i=0;i<(objects? objects->total:0);++i) 
    { 
        CvRect* r=(CvRect*)cvGetSeqElem(objects,i); 
        cvRectangle(img, cvPoint(r->x*scale,r->y*scale), cvPoint((r->x+r->width)*scale,(r->y+r->height)*scale), colors[i%8]); 
    } 
    for( int i = 0; i < (objects? objects->total : 0); i++ ) 
    { 
        CvRect* r = (CvRect*)cvGetSeqElem( objects, i ); 
        CvPoint center; 
        int radius; 
        center.x = cvRound((r->x + r->width*0.5)*scale); 
        center.y = cvRound((r->y + r->height*0.5)*scale); 
        radius = cvRound((r->width + r->height)*0.25*scale); 
        cvCircle( img, center, radius, colors[i%8], 3, 8, 0 ); 
    }


    cvShowImage( "result", img ); 
    cvReleaseImage(&gray); 
    cvReleaseImage(&small_img); 
}


四.结果及一些说明

运行结果如下图:

2012-8-1 21-20-21

需要说明的几点:

1.图像和.xml文件要放在该程序的bin目录下(.sln所在的目录)。

2.《学习OpenCV》里面就是用矩形表示,但是书里面的代码不太对,原因是忽略了缩放因子,即void detect_and_draw(IplImage* img )里面的double scale=1.2;

这个缩放因子的作用是:拿到一个图像,首先将它缩放(scale=1.2即变为一个小图像),然后在缩放后的小图像上检测人脸,这样会比较快。

最基本的就这么多吧。


OpenCV中基于Haar特征和级联分类器的人脸检测

使用机器学习的方法进行人脸检测的第一步需要训练人脸分类器,这是一个耗时耗力的过程,需要收集大量的正负样本,并且样本质量的好坏对结果影响巨大,如果样本没有处理好,再优秀的机器学习分类算法都是零。 今...
  • dcrmg
  • dcrmg
  • 2016年11月05日 11:19
  • 2325

【人脸检测】OpenCV中的Haar+Adaboost级联分类器分解(一):Haar特征介绍

转载:http://blog.csdn.net/zy1034092330/article/details/48850437 缩进最近由于工作原因,需要研究OpenCV中的Adaboost级联...
  • SMF0504
  • SMF0504
  • 2016年10月12日 10:44
  • 1537

opencv之haar特征+AdaBoos分类器算法流程(二)

基于Haar特征的Adaboost级联人脸检测分类器

 基于Haar特征的Adaboost级联人脸检测分类器 基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器。通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:...
  • BBZZ2
  • BBZZ2
  • 2016年02月29日 11:16
  • 511

人脸检测(Haar特征+Adaboost级联分类器)

一、Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究...

基于Haar特征的Adaboost级联人脸检测分类器

基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器。通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征、Adaboost、级联。理解了这三个词对该算法基本...

opencv之haar特征+AdaBoos分类器算法流程(一)

首先,需要说明的是,OpenCV自带的haar training提取的特征是haar特征(具体请参考我的另一篇关于haar特征的文章:http://blog.csdn.net/carson2005/a...

opencv之haar特征+AdaBoos分类器算法流程(三)

浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联

转自:http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 一、Haar分类器的前世今生        人脸检测属于计...

浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联

浅析人脸检测之Haar分类器方法 一、Haar分类器的前世今生        人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:opencv人脸检测(haar特征+AdaBoos分类器)(二)
举报原因:
原因补充:

(最多只允许输入30个字)