关闭
当前搜索:

粒子群算法(PSO)

1.粒子群算法概述 粒子群算法属于群智能算法的一种,使用过模拟鸟群捕食行为设计的。假设区域里只有一块食物(即通常优化问题的最优解)鸟群的任务是找到这个任务源。鸟群在整个搜寻过程中,通过相互传递各自的信息,让其他的鸟知道自己的位置,通过这样的协作,来判断自己找到的是不是最优解,同时,也将最优解的信息传递给整个鸟群,最终,整个鸟群都能聚集在食物源周围,既我们所说的找到了问题的最优解,即问题收敛。 2...
阅读(172) 评论(0)

蚁群算法

1.蚁群算法定义 又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质,并且现在已用于我们生活的方方面面。 2.基本原理 蚂蚁在运动过程中,会留下一种称为信息素的东西,并且会随着移动的距离,播散的信息素越来越少,所以...
阅读(151) 评论(0)

多维多选的背包问题

0-1背包问题是一类典型的组合优化问题,它要求找出n个物体的一个子集使其尽可能的装满容量为W的背包。他本质上是一个只有一个约束条件的0-1规划问题,在计算理论上属于NP完全问题,计算复杂性为o(2^n)。随着该问题的发展,产生了该问题的许多变形。例如:多选择背包问题;有界背包问题;无界背包问题;多约束背包问题等。多选择背包问题定义为有附加约束条件的背包问题,该问题带有互不相关的多选择约束。该问题的特...
阅读(148) 评论(0)

启发式算法

1.定义 大自然是神奇的,它造就了很多巧妙的手段和运行机制。受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为“启发式算法(Heuristic Algorithm)”。 现在的启发式算法也不是全部来自自然的规律,也有来自人类积累的工作经验。 2.发展 启发式算法的计算量都比较大,所以启发式...
阅读(63) 评论(0)

最优化理论

最优化理论主要研究给定限制条件下如何选取变量参数,使得目标函数达到最优的问题。 最优化理论分为线性规划与整数规划、非线性规划、动态规划等。最优化理论中的线性规划是运筹学中研究最早、发展较快、方法较成熟的一个重要分支,他是帮助人们进行科学计算的一种数学方法。一般地,求解目标函数在一定线性约束条件下的最优化问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。...
阅读(52) 评论(0)

what is CPU capacity-什么是CPU容量

原文链接:https://www.techwalla.com/articles/what-is-cpu-capacity 翻译: 一个计算机的CPU,是中心处理单元,是让你的计算机成为一个计算机的关键。若没有它,你在使用的计算机将是一堆塑料和金属部件的结合。使用计算机时不知道CPU的所有细节不重要,那并不妨碍你大致了解它是什么以及它是如何运作的,这样你或许可以得到更好的用户体验。...
阅读(62) 评论(0)

l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm

原文链接:http://blog.csdn.net/u011650143/article/details/54695180What is a norm?Mathematically a norm is a total size or length of all vectors in a vector space or matrices. For simplicity, we can say tha...
阅读(61) 评论(0)

约束满足问题与线性规划问题

一直以为自己研究的数学问题是约束满足问题,今天就查阅了一下约束满足问题的概念,看到以为博主提到了线性规划,仔细了解了一下他们之间的区别,原来我的问题是属于线性规划的。(害羞脸)约束满足问题: 一组状态必须满足若干约束或限制条件的对象,CSPs(旅行商问题)表示的是问题中的实体,有限数量、同类型的约束加之于变量之上,这类问题通过约束满足的方法解决。约束满足问题是求出满足条件的所有解 线性规划问题是...
阅读(92) 评论(0)

关联规则挖掘算法-Top Down FP-Growth

TD-FP-Growth两次数据库扫描 一次扫描计数 一次扫描建树树结构的构建仍是FP-Tree的思想挖掘频繁项集与之前的不同:从上到下依次挖掘算法思想1.扫描数据库,构建项头表 项头表包括三个属性:itemName itemCount side-link side-link主要是用来标注该item在树结构中所在的位置集合如下图可以很清晰的看出来: 2.构建树的过程在这里就不详细记录了...
阅读(112) 评论(0)

关联规则挖掘算法-CATS Tree(Compressed and Arranged Transaction Sequences Tree)

CATS Tree压缩排序事务树 FPTree的一个扩展 允许单路径频繁模式挖掘 适用于多种支持度、流数据、增量数据的情况算法基本过程数据集 新建root节点 扫描TID1,构建CATS Tree 每个节点计数为1 扫描TID2,可以看出两条数据的共同路径是f-a-c-m,而已构建额树结构中不包含item:d 则从d的父节点M建立分支,将之后的节点顺序加入facm节点数加1,其余新增节...
阅读(86) 评论(0)

pip常用命令汇总

//安装package pip install packagename//卸载package pip uninstall packagename//查看所安装的package pip list//将项目依赖的库重定向输出到文件,cd到项目根目录 pip projectname > requirements.txt//他人安装项目的依赖库 pip install -r requirements.txt...
阅读(64) 评论(0)

postgreSQL与MySQL的比较

(1)区别 mysql的各种text字段有不同的限制,需要手动区分small text,middle text, large text pg没有该限制,可以支持text的各种大小 按照SQL标准,null判断只能用is null,不能用 ==null pg可以设置transform_null_equals 把 = null 翻译成 is null 避免踩坑 MySQL 的事务隔离级别 repea...
阅读(135) 评论(0)

决策树算法之ID3

1. 决策树的基本认识决策树是一种依托决策而建立起来的一种树。在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象,树中的每一个分叉路径代表某个可能的属性值,而每一个叶子节点则对应从根节点到该叶子节点所经历的路径所表示的对象的值。决策树仅有单一输出,如果有多个输出,可以分别建立独立的决策树以处理不同的输出。接下来讲解ID3算法。2. ID3算法介...
阅读(140) 评论(0)

tensorflow手写体识别(一)

1.简介Tensorflow:张量流。 首先,Tensor代表了执行一个操作(运算)所产生的值。其次,一个Tensor实例并不会保存具体的值,而只是代表了产生这些值的运算方式。好像有些拗口,也就是说假如有一个加法操作add,令c = add(1,1)。那么c就是一个tensor实例了,代表了1+1的结果,但是它并没有存储2这个具体的值,它只知道它代表1+1这个运算。从这里也可以看出,tensorf...
阅读(167) 评论(0)

intellij idea 出现 File size exceeds configured limit (2560000). Code insight features not available

说明: idea对能关联的文件大小做了限制,主要是为了保护内存,默认值为2500kb。 解决: idea安装后的文件目录中进入bin,里面有一个文件idea.properties 修改这一行:#--------------------------------------------------------------------- # Maximum file si...
阅读(330) 评论(0)
126条 共9页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:151241次
    • 积分:2355
    • 等级:
    • 排名:第17779名
    • 原创:101篇
    • 转载:24篇
    • 译文:1篇
    • 评论:9条
    contact me
    QQ:1358384755
    感谢您的支持 请我喝杯咖啡可好?
    最新评论