poj 3254 Corn Fields
http://poj.org/problem?id=3254
问题描述:给你一个n行m列的0-1矩阵,0表示不能种植物,1可以种植物,要求种植不能相邻,问一共有多少种可行方案
思路: 状态压缩+位运算+动态规划
1.状态压缩 : 一串二进制序列转换成十进制数字,每行要求相间种植,无需2^n中情况,而是将所有可行状态000,001,010,100,101预处理出来,查询时只需遍历这些情况即可
2.位运算的巧妙:x&(x<<1)判断是否有11相邻的情况;
st[j]~row[i]判断状态j是否与第i行种植情况冲突,需要想一想呦~
3.DP:dp[i][j]表示第i行状态j的情况,它取决于状态j与上一行可行状态是否冲突,若上一行状态k可行,dp[i][j]+=dp[i-1][k],不要忘记最后的取模
注意:开数组注意范围,st[1<< N],开成st[N]一直WA。。。
笔者第一道状态压缩dp,做的好辛苦,继续加油喽~
参考代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<vector>
#include<set>
#include<map>
#include<algorithm>
#include<sstream>
#define eps 1e-9
#define pi acos(-1)
#define long long ll
#define N 15
using namespace std;
const int _max = (1<<N) + 10;
const int mod = 1e8;
int x,n,m,row[N],st[_max];
int top,dp[N][_max];
bool judge(int x,int j){
int y = st[j];
if(y&~x) return false;//当前状态st[j]&(~row[i])为0才与本行不冲突,仔细想想呦~
return true;
}
void init(){//初始化所有有效状态
top = 0;
int x;
for( int i = 0; i <(1<<n); ++ i){
x = i&(i<<1);
if(!x) st[++top] = i;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
#endif // ONLINE_JUDGE
while(scanf("%d%d",&m,&n) == 2){//m行n列
init();
memset(dp,0,sizeof(dp));
for(int i = 1; i <= m; ++ i){//状态压缩:二进制串转十进制
row[i] = 0;
for(int j = 1; j <= n; ++ j){
scanf("%d",&x);
row[i]=(row[i]<<1)+x;
}
}
for(int i = 1; i<= top; ++ i)
if(judge(row[1],i))
dp[1][i] = 1;
for(int i = 2; i <= m; ++ i){
for(int j = 1; j<= top; ++ j){//这一行的所有状态
if(judge(row[i],j)==false) continue;//与自身不冲突
for(int k = 1; k <= top; ++ k){
if(st[j]&st[k]) continue;//与上一行不冲突且与自身不冲突
dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;
}
}
}
int tar = 0;
for(int i = 1; i <= top; ++ i) tar=(tar+dp[m][i])%mod;
printf("%d\n",tar);
}
return 0;
}
- 加粗
Ctrl + B
- 斜体
Ctrl + I
- 引用
Ctrl + Q
- 插入链接
Ctrl + L
- 插入代码
Ctrl + K
- 插入图片
Ctrl + G
- 提升标题
Ctrl + H
- 有序列表
Ctrl + O
- 无序列表
Ctrl + U
- 横线
Ctrl + R
- 撤销
Ctrl + Z
- 重做
Ctrl + Y