数据结构,图的邻接矩阵创建,邻接矩阵与邻接表的交换,两种表的输出,过程用C++实现

原创 2013年12月01日 23:11:44
/*
编写一个程序algo8-1.cpp,实现不带权图和带权图的邻接矩阵与邻接表的互相
转换算法、输出邻接矩阵与邻接表的算法,并在此基础上设计一个程序exp8-1.cpp
实现如下功能:
1)建立如图有向图G的邻接矩阵,并输出;
2)由有向图G的邻接矩阵产生邻接表,并输出;
3)再由2)邻接表产生对应的邻接矩阵,并输出。
*/


#include<iostream>
#define MAX 6
using namespace std;

class VertexType	//顶点类型
{
public:
	int no;		//顶点编号
	char info;	
};

class MGraph
{
public:
	int edges[MAX][MAX];	//邻接矩阵的变数组,使用int类型记录,主要记录为0、1,带权的则为其权值
	int n,e;				//	顶点数,边数
	VertexType vexs[MAX];	//存放顶点信息
	MGraph():n(0),e(0){
		for	(int x = 0 ; x < MAX ; x++)
			for(int y = 0 ; y < MAX ; y ++)
				edges[x][y] = 0;
		for (int i =0; i < MAX; i++)
			this ->vexs[i].info = -1;
	}
};//	完整的图邻接矩阵类型

class ArcNode
{
public:
	ArcNode():adjvex(0),nextarc(NULL){}
	int adjvex;		//该边的终点编号
	ArcNode * nextarc;
	char info;		//边的信息
};

class VNode		//起点信息
{
public :
	VNode():data(0),firstarc(NULL){}
	void Reset()
	{
		adjvex = -1;
		data = 0;
		firstarc = NULL;
	}
	int adjvex;
	char data;		//起点信息
	ArcNode * firstarc;
};

typedef VNode AdjList[MAX]	;	//eg:"typedef char Line[81];      //Line是char[81]    (而不是说char是line[81])"

class ALGraph
{
public:
	ALGraph():n (0),e (0){				//邻接表初始化
		for(int i = 0;i < MAX ; i ++)
			adjlist[i].Reset();
	}
	AdjList adjlist;
	int n,e;
};					//完整的图邻接表的类型

void CreatMGraph(MGraph * G)		//图的构造函数,不带权带向
{
	cout << "输入图的顶点个数: ";
	cin >> G ->n ;
	cout << "输入图的边数:";
	cin >> G ->e ;

	int x,y;
	for(x = 0 ; x < G ->n ; x++)
		for ( y = 0 ; y < G ->n ; y++)
			G->edges[x][y] = 0;			//默认设定为 0

	for (int i = 0 ; i < G ->e ; i++)
	{
		int weight; // 权值
		cout << "请输入第" << (i+1) << "条边的前后节点。"  << endl;
		cout << "出发点:" ;
		cin >> x;
		cout << "接收点:" ;
		cin >> y;
	/*	cout << "输入权值:";
		cin >> weight;*/
		G ->edges[x][y] = 1;
	}
}

void OutputMGraph(MGraph * G)
{
	cout << "----------现在输出邻接矩阵------------" << endl; 
	for(int i = 0 ; i < G ->n ; i ++)
	{
		for (int j = 0 ; j < G ->n ; j ++)
			cout << G ->edges[i][j] << "    " ;
		cout << endl;
	}
	cout << "--------------------------------------" <<endl;	
}

void OutputALGraph(ALGraph * G)		//输出邻接表
{
	cout << "--------------现在输出邻接表---------------" << endl;
	for(int i = 0; i < G ->n ; i ++)
	{
		if(G ->adjlist[i].adjvex  == -1)	break;		//不存在顶点时退出循环
		cout << G ->adjlist[i].adjvex ;
		while(G ->adjlist [i].firstarc != NULL)
		{
			ArcNode * temp = G ->adjlist[i].firstarc;
			while(temp != NULL)
			{
				cout << "---->" << temp->adjvex;
				if(temp ->nextarc == NULL)	break;
				temp = temp ->nextarc;
			}if(temp ->nextarc == NULL) break;	//再跳出
		}
		cout << endl;
	}
	cout << "---------------邻接表输出结束---------------" << endl;
}

void MatToList(MGraph * g,ALGraph *&G)
{
	ArcNode * p;
	G = new ALGraph();
	for(int i = 0; i < g ->n ;i ++)		//初始化邻接表,使其写上顶点编号
		G ->adjlist[i].adjvex = i;		//	0 1 2 3 4 5	,n的值应该为6
	for(int i = 0;i < g ->n;i++)
		for(int j = 0; j < g ->n;j++)
			if(g ->edges[i][j] != 0)			//不带权的有向或无向邻接矩阵转邻接表
			{	p = new ArcNode();
				p ->adjvex = j;
				p ->nextarc = G ->adjlist[i].firstarc;
				G ->adjlist[i].firstarc = p;
			}
		
	G ->n = g ->n;
	G ->e = g ->e;
}

void ListToMat(ALGraph * g,MGraph * &G)		//邻接表转邻接矩阵
{
	int i;
	ArcNode * p;
	for( i =0; i< g ->n;i++)
	{
		p = g ->adjlist[i].firstarc;
		while(p != NULL)
		{
			G ->edges[i][p ->adjvex] = 1;
			p = p ->nextarc;
		}
	}
	G ->e = g ->e;
	G ->n = g ->n;
}


int main()
{
	MGraph * G = new MGraph();
	CreatMGraph(G);
	OutputMGraph(G);

	ALGraph * J;
	MatToList(G,J);
	OutputALGraph(J);

	MGraph * g = new MGraph();
	ListToMat(J,g);
	OutputMGraph(g);


	return 0;

}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

《数据结构》C++代码 邻接表与邻接矩阵

上一篇“BFS与DFS”写完,突然意识到这个可能偏离了“数据结构”的主题,所以回来介绍一下图的存储:邻接表和邻接矩阵。          存图有两种方式,邻接矩阵严格说就是一个bool型的二维数组,...

无向图的邻接矩阵和邻接表实现各种操作 -- C++语言描述

一:实现代码 #ifndef _GRAPH_H #define _GRAPH_H #include #include using namespace::std; /////////////...

C++ 图结构邻接矩阵简单实现

c++ 图结构邻接矩阵简单实现#ifndef GRAPHMAT_H #define GRAPHMAT_H#include using namespace std;#define MAX_VERTEX...

图的邻接表数据结构的C++实现方法

图的邻接表表示方法采用链表的方式针对每个节点创建一个属于自己的链表,其中头指针为节点自身,其后的所有元素为与自己相连的其他节点,头结点只需记录节点的名字和序号,链表的其他节点还需记录两点之间边的权值,...

【数据结构】拾遗(一):图的邻接矩阵创建以及其深广度遍历C++实现

图的深度遍历和广度遍历是数据结构的基础,但是大一的时候并没有好好的实现它。现在拾遗也为时不晚。     深度遍历的思想是递归,找到不能找再换未被访问的顶点。     广度遍历的思想是将一个顶点所有邻接...

数据结构 JAVA描述(六) 图的创建 (邻接矩阵+邻接表)

图的抽象数据类型描述
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)