NOIP复习篇———贪心

本文探讨了贪心算法在解决旅行家驾驶问题和线段覆盖问题中的应用,详细介绍了问题背景和解决方案,并给出了实例分析。此外,还提及贪心策略在地鼠游戏中获取最高分的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NOIP复习篇———贪心
-------------------------------------------------------------------------------------------------------------------
高手的切磋不在于难题,而在于SB算法....NOIP来了,决不能犯SB错误
---------------------------------------------------------------------------------------------------------------------------------------------------------
1.1 贪心算法
#定义#
  对于某个问题,不从宏观去考虑问题,而是从微观考虑问题,尽管大多数时候是不奏效的,但也有时候很有效。
#讲解#
  贪心算法,是指人们为了解决问题而下意识的为自己的最大利益而设计的方案,往往题目中会出现“最小”“最大”等关键词,而贪心算法的最大难度莫过于证明贪心和想出贪心策略,对于NOIP普及组的难度,不会考察这点..举个简单的例子,人们在穿越草地时往往选择直线穿过(两点之间,线段最短),这便是贪心算法。
  而贪心算法拥有的一个重要特征就是——最优子结构
#模板#
  function greedy(){
     int a[]={问题的子问题};
     sort(a+1,a+n+1);
     for(i=1;i<=n;i++)
       if(a[i]可行)直接记录,并退出
 }
1.2 例题
1.《旅行家的预算》
题目描述 Description

一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(假设出发时油箱是空的)。给定两个城市之间的距离D1、汽车油箱的容量C(以升为单位)、每升汽油能行驶的距离D2、出发点每升汽油价格P和沿途油站数N(N可以为零),油站i离出发点的距离Di、每升汽油价格Pi(i=1,2,……N)。计算结果四舍五入至小数点后两位。如果无法到达目的地,则输出“No Solution”。

输入描述 Input Description

第一行D1 C D2 P N

之后N行,每行2个数表示离出发点的距离Di和每升汽油的价格Pi

输出描述 Output Description

最消费用,保留2位小数

样例输入 Sample Input

275.6 11.9 27.4 2.8 2

102.0 2.9

220.0 2.2

样例输出 Sample Output

26.95

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值