关闭

机器学习中的范数规则化之(一)L0、L1与L2范数

今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢。          监督机器学习问题无非就是“minimizeyour error while re...
阅读(70) 评论(0)

如何包装你的实验结果

原文地址在此 不少研究生们可能都有这样的体会:千辛万苦得来的实验结果,不知道该如何展现给别人?的确如此,有些研究工作做得非常出色,可能由于呈现方式的问题,不能发表高水平的文章(尤其是SCI文章)。        仔细分析C-N-S系列的大牛文章,不难发现,这些高水平论文的图表质量也高人一筹。因此,合理的“包装”自己的实验结果非常重要。 一、共聚焦图片 1. 拍照时要保留大中...
阅读(106) 评论(0)

支持向量机: Maximum Margin Classifier

本文是“支持向量机系列”的第一篇,参见本系列的其他文章。原文链接在此。 支持向量机即 Support Vector Machine,简称 SVM 。我最开始听说这头机器的名号的时候,一种神秘感就油然而生,似乎把 Support 这么一个具体的动作和 Vector 这么一个抽象的概念拼到一起,然后再做成一个 Machine ,一听就很玄了! 不过后来我才知道,原来 SVM 它并不是一...
阅读(70) 评论(0)

漫谈Learning to Rank

大概去年10月份开始接触Learning to Rank,最初的Motivation是由于在实验中遇到排序的任务,然而传统的排序公式虽然简单,易调,但是能利用到的特征非常少,无法挖掘出其内在支配排序的信息,导致排序的性能不理想。因此才想到使用Supervised learning的方法,藉以指导排序。参考的主要几篇文章如下: 1: Adapting Ranking SVM to Docume...
阅读(91) 评论(0)
    个人资料
    • 访问:341次
    • 积分:19
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:4篇
    • 译文:0篇
    • 评论:0条
    文章存档