关闭

台湾大学机器学习

标签: 机器学习计算机台湾class
738人阅读 评论(0) 收藏 举报
分类:

台湾大学机器学习基石课程总结

  1. 第三章:机器学习的不同类别(三个角度):
    1:二分类,多分类,回归,struction learning(不常见)
    2:监督学习,非监督学习,半监督学习(比如人脸识别中,不是每个样本我们都能知道其类别,)增强学习(训狗,深蓝计算机的智能下棋)
    3:batch learning,online learning (我们的资料是一笔一笔的来的,我们的g也是不断变化的,如pla,和reinforcement learning),active learning (以前都是机器被动的接受资料,现在是让机器自己问问题,当我们的label很难拿到时候使用)

  2. 第四章:机器学习的可能性
    1.并不是所有的资料机器都可以学习,有的资料机器就无法从中学到东西
    2.从概率的角度去阐述机器学习,我们做的事情其实就是概率中的用样本来估计总体,但我们的样本能否准确的估计总体?就是我们机器学习的内容,这里我们引入了一个数学公式:hoeffding’s inequality:p[|vu|>ε]2exp(2ε2N),这个公式中v就是我们的samples,u就是我们的资料总体,ε相当于是错误率,N是我们sampes的个数。
    3.学习的过程就是我们选择一个hypothesis 来模拟我们的g,使其越来越接近我们的目标函数f,这里的f是我们的目标,而g就是我们最终要学习的结果,我们的目标是让g f,把我们抽样的过程和我们机器学习的过程相比对就是要让p[|E(in)E(out)|>ε]2exp(2ε2N),由此知道即使我们得到了小的E(in),也并是就意味这学习的结束,其必须让我们的E(out)也非常小才可以。
    4.bad samples and bad Data:
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里的M是所有bad Data的h,之后再谈其作用。未完……

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    time
    个人资料
    • 访问:22880次
    • 积分:522
    • 等级:
    • 排名:千里之外
    • 原创:29篇
    • 转载:0篇
    • 译文:0篇
    • 评论:7条
    最新评论