台湾大学机器学习

原创 2015年11月17日 21:00:32

台湾大学机器学习基石课程总结

  1. 第三章:机器学习的不同类别(三个角度):
    1:二分类,多分类,回归,struction learning(不常见)
    2:监督学习,非监督学习,半监督学习(比如人脸识别中,不是每个样本我们都能知道其类别,)增强学习(训狗,深蓝计算机的智能下棋)
    3:batch learning,online learning (我们的资料是一笔一笔的来的,我们的g也是不断变化的,如pla,和reinforcement learning),active learning (以前都是机器被动的接受资料,现在是让机器自己问问题,当我们的label很难拿到时候使用)

  2. 第四章:机器学习的可能性
    1.并不是所有的资料机器都可以学习,有的资料机器就无法从中学到东西
    2.从概率的角度去阐述机器学习,我们做的事情其实就是概率中的用样本来估计总体,但我们的样本能否准确的估计总体?就是我们机器学习的内容,这里我们引入了一个数学公式:hoeffding’s inequality:p[|vu|>ε]2exp(2ε2N),这个公式中v就是我们的samples,u就是我们的资料总体,ε相当于是错误率,N是我们sampes的个数。
    3.学习的过程就是我们选择一个hypothesis 来模拟我们的g,使其越来越接近我们的目标函数f,这里的f是我们的目标,而g就是我们最终要学习的结果,我们的目标是让g f,把我们抽样的过程和我们机器学习的过程相比对就是要让p[|E(in)E(out)|>ε]2exp(2ε2N),由此知道即使我们得到了小的E(in),也并是就意味这学习的结束,其必须让我们的E(out)也非常小才可以。
    4.bad samples and bad Data:
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里的M是所有bad Data的h,之后再谈其作用。未完……

台湾大学林轩田教授机器学习基石课程理解及python实现----PLA

最近在班主任的带领下,开始观看台湾大学林轩田教授的机器学习基石课程,虽然吧,台湾人,汉语说得蛮6,但是还是听着怪怪的,不过内容非常值得刚刚入门的机器学习小白学习,话不多说,直接进入正题。 1.基本介绍...
  • qq_30537063
  • qq_30537063
  • 2016年07月11日 15:16
  • 5132

台湾大学林轩田老师机器学习基石:内容简介

第一周:ML简介、ML与DM/AI/Statistics的区别 第二周:perceptron线性分类器 第三周:从输入特征、输出空间、label状况、学习方式四方面对ML进行分类 第四周:PAC学习原...
  • mmc2015
  • mmc2015
  • 2016年02月18日 23:41
  • 1951

台湾大学林轩田机器学习基石课程学习笔记16(完结) -- Three Learning Principles

上节课我们讲了一个机器学习很重要的工具——Validation。我们将整个训练集分成两部分:DtrainD_{train}和DvalD_{val},一部分作为机器学习模型建立的训练数据,另一部分作为验...
  • red_stone1
  • red_stone1
  • 2017年06月06日 08:27
  • 4385

台湾大学林轩田机器学习基石课程学习笔记3 -- Types of Learning

上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA。PLA能够在平面中选择一条直线将样本数据完全正确分类。而对于线性不可分的情况,可以使用Pocket Algorithm来处理。本节课将主要...
  • red_stone1
  • red_stone1
  • 2017年05月02日 09:16
  • 1854

台湾大学林轩田机器学习技法课程学习笔记6 -- Support Vector Regression

上节课我们主要介绍了Kernel Logistic Regression,讨论如何把SVM的技巧应用在soft-binary classification上。方法是使用2-level learning...
  • red_stone1
  • red_stone1
  • 2017年07月09日 13:37
  • 1189

台大林轩田·机器学习基石记要

台大林轩田·机器学习基石记要昨天开始看林轩田的机器学习基石,从今天起开始去粗取精 本文在差不多是随堂笔记,可读性不好。。第一讲比较基础,一些概念自己早已经理解了,所以不再做笔记,有点印象的是讲到了M...
  • qiusuoxiaozi
  • qiusuoxiaozi
  • 2016年06月01日 19:47
  • 11623

台湾大学林轩田机器学习技法课程学习笔记1 -- Linear Support Vector Machine

关于台湾大学林轩田老师的《机器学习基石》课程,我们已经总结了16节课的笔记。这里附上基石第一节课的博客地址:台湾大学林轩田机器学习基石课程学习笔记1 – The Learning Problem本系列...
  • red_stone1
  • red_stone1
  • 2017年06月21日 17:11
  • 4010

台湾大学林轩田机器学习基石课程学习笔记7 -- The VC Dimension

前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释。机器能够学习必须满足两个条件: 假设空间H的Size M是有限的,即当N足够大的时候,那么对于假设空间中任意一个假设g,Eout≈EinE_...
  • red_stone1
  • red_stone1
  • 2017年05月05日 09:38
  • 2566

台湾大学林轩田机器学习基石课程学习笔记1 -- The Learning Problem

最近在看NTU林轩田的《机器学习基石》课程,个人感觉讲的非常好。整个基石课程分成四个部分: When Can Machine Learn? Why Can Machine Learn? How C...
  • red_stone1
  • red_stone1
  • 2017年06月07日 16:28
  • 3704

台大陈蕴侬、李宏毅“应用深度学习”课程(国语)

课程说明:学习深度学习的基本理论,以及如何应用目标:1)什么是深度学习2)如何用深度学习做任务3)使用深度学习工具包来实现设计的模型4)特定深度学习技术基本要求:熟练使用Python 课程表:学习视频...
  • gh13uy2ql0N5
  • gh13uy2ql0N5
  • 2017年10月22日 00:00
  • 277
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:台湾大学机器学习
举报原因:
原因补充:

(最多只允许输入30个字)