台湾大学机器学习

原创 2015年11月17日 21:00:32

台湾大学机器学习基石课程总结

  1. 第三章:机器学习的不同类别(三个角度):
    1:二分类,多分类,回归,struction learning(不常见)
    2:监督学习,非监督学习,半监督学习(比如人脸识别中,不是每个样本我们都能知道其类别,)增强学习(训狗,深蓝计算机的智能下棋)
    3:batch learning,online learning (我们的资料是一笔一笔的来的,我们的g也是不断变化的,如pla,和reinforcement learning),active learning (以前都是机器被动的接受资料,现在是让机器自己问问题,当我们的label很难拿到时候使用)

  2. 第四章:机器学习的可能性
    1.并不是所有的资料机器都可以学习,有的资料机器就无法从中学到东西
    2.从概率的角度去阐述机器学习,我们做的事情其实就是概率中的用样本来估计总体,但我们的样本能否准确的估计总体?就是我们机器学习的内容,这里我们引入了一个数学公式:hoeffding’s inequality:p[|vu|>ε]2exp(2ε2N),这个公式中v就是我们的samples,u就是我们的资料总体,ε相当于是错误率,N是我们sampes的个数。
    3.学习的过程就是我们选择一个hypothesis 来模拟我们的g,使其越来越接近我们的目标函数f,这里的f是我们的目标,而g就是我们最终要学习的结果,我们的目标是让g f,把我们抽样的过程和我们机器学习的过程相比对就是要让p[|E(in)E(out)|>ε]2exp(2ε2N),由此知道即使我们得到了小的E(in),也并是就意味这学习的结束,其必须让我们的E(out)也非常小才可以。
    4.bad samples and bad Data:
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里的M是所有bad Data的h,之后再谈其作用。未完……

相关文章推荐

台湾大学林轩田机器学习基石课程学习笔记16(完结) -- Three Learning Principles

上节课我们讲了一个机器学习很重要的工具——Validation。我们将整个训练集分成两部分:DtrainD_{train}和DvalD_{val},一部分作为机器学习模型建立的训练数据,另一部分作为验...

台湾大学机器学习笔记——Neural Network 神经网络

今天介绍一下Neural NetWork,都是一下个人理解,认真看的话看懂肯定不是问题。个人微信公众号:计算机金融阅读。欢迎关注。 1.首先介绍一下神经网络的基本组成,从左边开始,那些x就是输入样本...

台湾大学机器学习基石Lecture12

12-1:Quadratic Hypothesis二次规划的假设 之前我们介绍的都是线性假设,即用一条线将数据分隔开,例如下面的情形: 直观的第一感受就是可以用一条直线将O和X分隔开,由此也引...

台湾大学机器学习基石手写笔记

  • 2016年07月07日 13:43
  • 8.88MB
  • 下载

台湾国立大学机器学习技法.听课笔记(第三讲) :Kernel Support Vector Machine

台湾国立大学机器学习技术.听课笔记(第三讲) :Kernel Support Vector Machine 一,kernel trick(kernel技巧) 1,kernel 的引出 对偶SV...

台湾国立大学机器学习技法.听课笔记(第六讲):Support Vector Regression

台湾国立大学机器学习技法.听课笔记(第六讲) :Support Vector Regression 一,Kernel Ridge Regression 1.提出线性岭回归问题 我们上一讲学...

台湾国立大学机器学习基石.听课笔记(第十三讲):harzard of overfitting

台湾国立大学机器学习基石.听课笔记(第十三讲) :harzard  of overfitting 1,什么是过拟合(overfitting) 简单的说就是这样一种学习现象:Ein 很小,Eout 却很...

台湾国立大学机器学习基石.听课笔记(第十一讲):Linear Models of Classification

台湾国立大学机器学习基石.听课笔记(第十一讲) :Linear Models  of Classification   在上一讲中,我们了解到线性回归和逻辑斯蒂回归一定程度上都可以用于线性二值分类,因...

台湾国立大学的《机器学习基石》第一讲 笔记

一,机器学习定义A computer program is said to learn from experience E with respect to some class of tasks T ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:台湾大学机器学习
举报原因:
原因补充:

(最多只允许输入30个字)