数字图像处理中相关和卷积的区别

转载 2015年07月09日 21:39:56

在执行线性空间滤波时,经常会遇到两个概念相关和卷积
二者基本相似,在进行图像匹配是一个非常重要的方法。
相关是滤波器模板移过图像并计算计算每个位置乘积之和的处理
卷积的机理相似,但滤波器首先要旋转180度
相关的计算步骤:
(1)移动相关核的中心元素,使它位于输入图像待处理像素的正上方
(2)将输入图像的像素值作为权重,乘以相关核
(3)将上面各步得到的结果相加做为输出
卷积的计算步骤:
(1)卷积核绕自己的核心元素顺时针旋转180度
(2)移动卷积核的中心元素,使它位于输入图像待处理像素的正上方
(3)在旋转后的卷积核中,将输入图像的像素值作为权重相乘
(4)第三步各结果的和做为该输入像素对应的输出像素
超出边界时要补充像素,一般是添加0或者添加原始边界像素的值
    可以看出他们的主要区别在于计算卷积的时候,卷积核要先做旋转。
而计算相关过程中不需要旋转相关核。

离散单位冲击:我们将包含单个1而其余全是0的函数成为离散单位冲击。
重要性质:一个函数与离散单位冲击相关,在冲击位置产生这个函数的一
个翻转版本。
f 函数
w 滤波器模板
eg:
f(x,y)
  0 0 0 0 0
  0 0 0 0 0 
  0 0 1 0 0
  0 0 0 0 0
  0 0 0 0 0
w(x,y)
  1 2 3 
  4 5 6 
  7 8 9
相关 f*w = 
     0     0     0     0     0
     0     9     8     7     0
     0     6     5     4     0
     0     3     2     1     0
     0     0     0     0     0
卷积f*w=
     0     0     0     0     0
     0     1     2     3     0
     0     4     5     6     0
     0     7     8     9     0
     0     0     0     0     0
相关的用途:图象的匹配
假如函数f中存在w的一个复制版本,即f:
  0 0 0 0 0
  0 1 2 3 0 
  0 4 5 6 0
  0 7 8 9 0
  0 0 0 0 0
f*w是多少呢?
    9    26    50    38    21
    42    94   154   106    54
    90   186   285   186    90
    54   106   154    94    42
    21    38    50    26     9
是不是会发现w与f中w的复制版本重合时,该点的值最大。最大值为
1^2+2^2+……+9^2 = 285
这就是用相关进行图像匹配的基本原理。当然了,在图像匹配时还要进行
相关函数的归一化等操作。

图像卷积与滤波的一些知识点

图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09       之前在学习CNN的时候,有对卷积经常一些学习和整理,后来就烂尾了,现在稍微整...
  • zouxy09
  • zouxy09
  • 2015年10月12日 21:24
  • 92213

2DPCA以及增强的双向2DPCA详解

最近在做目标追踪的过程中用到了2DPCA变换,花了两天时间研究了下2DPCA的起源及其重要改进,在此稍作总结。   1、一维PCA及其不足之处   在介绍2DPCA之前,稍微提一下历史悠久的PCA...

用Python写八数码问题

尝试用Python写了个八数码问题的算法,改进了广度搜索算法。

数字图像处理:基本算法-卷积和相关

在执行线性空间滤波时,经常会遇到两个概念相关和卷积二者基本相似,在进行图像匹配是一个非常重要的方法。 相关是滤波器模板移过图像并计算计算每个位置乘积之和的处理卷积的机理相似,但滤波器首先要旋转180...

卷积理解以及在数字图像处理中的应用

卷积的数学意义 卷积(Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子 卷积的物理意义 卷积在信号处理机制中用途广泛,其中函数f可看做信号的发生,函数g可看做对信号响应...

数字图像处理03(卷积、滤波、边缘检测——算法原理)

1.首先介绍一下相关和卷积的关系: 图像滤波的计算过程分析     滤波通常是用卷积或者相关来描述,而线性滤波一般是通过卷积来描述的。他们非常类似,但是还是会有不同。下面我们来根据相关和卷积计算...

数字图像处理:第九章 线性系统、卷积、傅立叶变换

第九章 线性系统、卷积、傅立叶变换 目录 1.    线性系统 2.    二维卷积 3.    Fourier变换 作业 1. 线性系统 线性系统理论在“系统分...

数字图像处理2--数学基础(傅立叶,拉普拉斯,卷积,差分计算)

傅立叶变换     若 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶...

使用 matlab 数字图像处理(九)—— 去卷积(deconvolution,逆滤波复原)

在没有噪声的情况下,频域退化模型可由下式给出:G(u,v)=H(u,v)F(u,v) G(u,v)=H(u,v)F(u,v)G(u,v)G(u,v) :退化图像; H(u,v)H(u,v) :退化函数...

数字图像处理—空域变换增强之滤波增强(模板操作)(模板卷积)

空域滤波是在图像空间借助模板进行邻域操作完成的。 ●根据其特点一般可分为线性和非线性2类; ●根据功能主要分成平滑和锐化2类:     ★平滑可用低通滤波器(低频,对应整体信息,灰度变化缓慢)实现。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数字图像处理中相关和卷积的区别
举报原因:
原因补充:

(最多只允许输入30个字)