关闭

PID控制原理

标签: PID
638人阅读 评论(4) 收藏 举报
分类:
 PID控制原理
 现在只是在应用,所以没有必要在数学上去证明
1. PID只是一个控制理论,没有多么神奇的(在心理上先藐视他)
2.一些约定:{

     Kp比例系数

     Ki:积分系数;

     Kd:微分系数;
     O:输出
     X:现在的温度**
     E:误差   E=80-X;
     }
     
假设我现在想要实现恒温的加热器,设定一个温度是80℃;背景就是这样,那么聪明的Mr.Ding接到这任务,发现现在室温是24℃,于是他打开加热器的开关,开始加热,只要没有到80℃,就一直加热(加热功率恒定),很快就到了80℃,而且马上就超过了80℃,这是Mr.Ding就把加热器关了,很快温度就下降了,而且还小于了80℃,这样来回了300回合,聪(S)明(B)的Mr.Ding受不了了,于是就去问他的师傅Mr.Mr.Ding。还是师傅聪明啊,先给Mr.Ding一顿揍,然后说这么简单的问题还还有脸来问,你用一个可调功率的加热器,当温度接近80℃的时候就把功率调小就好了。
                         也就是:O=Kp*(E)=Kp*(80-X);
Mr.Ding发现还真是好使啊,他拿了一个温度计测量实时的温度,现在室温是24℃;他打开加热器功率  O=Kp*(80-X);当温度接近目标温度80℃的时候,输出功率就非常小了,可是在时间的过程中他发现始终温度徘徊在接近80的附近而到达不了80度,爱思考的他发现
                         O=Kp*(80-X)
                         X与O是正相关的,假设X=1*O
                         于是: O=Kp*(80-O);
                         O=【Kp/(1+Kp)】*80;
                         当Kp→∞   O才会等于80;就是X才会等于80 ,But  这是工科,是工程没有数学系那些个矫情的理想情况,所以也就是说用Kp乘以E永远无          法准确的到达目标,(Btw 这就是所谓的稳态误差);所以说Mr.Mr.Ding也是会出错的,马克思说得好实践才是检验真理的唯一标准 ,老鸟也会出错,不要看他们装逼觉得很屌,不要迷信他们
     那么遇到这个稳态误差该怎么办呢?
聪明的Mr.Ding想有一个误差,那我要是把他积分一下,然后反馈到输出,那么随着时间的增长就会导致最终等于目标值
                    O=Kp*(E)+Ki*( ∫E dt)
               即:O=Kp*(80-X)+Ki*[∫(80-X) dt]
                    这样就消除了稳态误差,但是CPU中无法积分,那么就用和来代替
                    O=Kp*(E)+Ki*(ΣE)
     Mr.Ding赶快把这个理论用于实践,现在可以很快的调节到80℃,但是调节的过程中一开始那个过调的毛病又出现了,这可怎么办呢?
Mr.Ding认为出现这种问题主要是对误差的反应太慢 ;之前的比例和积分都是对误差产生了,然后做出调节,如果有一个工具能够预测捡来的误差,提前调节,那么早一步做准备,这样就可以弥补一下反应太慢的缺点。数学不错的Mr.Ding很快找到了:微分 ;众所周知微分反映的曲线变化的趋势,所以选择微分来提前预测误差的变化是科学的
                   O=Kp*(E)+Ki*( ∫E dt)+Kd*(dE/dt)
               同样计算机无法微分,那就拿后向差分来代替

于是Mr.Ding打开加热器,隔一段固定的时间T就按照上面的公式计算一下下一次的功率(也是蛮拼的,不过我们有单片机这货来代替)

终于从24℃到目标80℃的过程又快,又稳定





               (图片来自 http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID)

为了搞懂PID,也是拼了Mr.Ding一晚上的时间。上面那个链接里的PID介绍完爆了国内各大论坛关于PID的讲解



















     
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:8280次
    • 积分:284
    • 等级:
    • 排名:千里之外
    • 原创:18篇
    • 转载:0篇
    • 译文:0篇
    • 评论:5条
    最新评论