最长上升子序列(模板)

转载请注明出处:http://blog.csdn.net/u012860063


最长递增子序列(Longest Increasing Subsequence)下面我们简记为:LIS。

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,我们可以很轻松的看出来它的LIS长度为5。

但是如果一个序列太长后,就不能直接看出来了!


下面我们试着逐步找出答案。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len记录目前最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,表示当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时的Len = 1。

然后,把d[2]有序地放到B里,令B[1] = 1,表示长度为1的LIS的最小末尾是1,d[1]=2已经没用了,同样这时的Len = 1。

接着,d[3] = 5,d[3] > B[1],所以令B[1+1] = B[2] = d[3] = 5,表示长度为2的LIS的最小末尾是5,这时候B[1..2] = 1, 5,这时的Len = 2。

接着,d[4] = 3,它正好夹在了1和
5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是把5淘汰掉,这时候B[1..2] = 1, 3,这时Len = 2。


继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,这时的Len = 3。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4,同样这时Len = 3。

第7个, d[7] = 8,它很大,比4大,于是B[4] = 8,这时的Len = 4。

第8个, d[8] = 9,得到B[5] = 9,这时的Len = 5。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,这时的Len = 5。

于是我们知道了LIS的长度为5。

注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

最后我们发现:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)!


一般的情况下:

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;

int a[1007],dp[1007],n;

int LIS(int *a)
{
    int i,j,ans,m;
    dp[1] = 1;
    ans = 1;
    for(i = 2; i <= n; i++)
    {
        m = 0;
        for(j = 1; j < i; j++)
        {
            if(dp[j]>m && a[j]<a[i])
				m = dp[j];
        }
        dp[i] = m+1;
        if(dp[i]>ans)
			ans = dp[i];
    }
    return ans;
}


二分优化:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

int a[40007], dp[40007], n;

int bin(int len,int k)
{
    int l = 1, r = len;
    while(l <= r)
    {
        int mid = (l+r)/2;
        if(k > dp[mid])
            l = mid+1;
        else
            r = mid-1;
    }
    return l;
}

int LIS(int *a)
{
    int i,j,ans=1;
    dp[1] = a[1];
    for(i = 2; i <= n; i++)
    {
        if(a[i] <= dp[1])//如果比最小的还小
            j = 1;
        else if(a[i] > dp[ans])//如果比最大的还大
            j = ++ans;
        else
            j = bin(ans,a[i]);
        dp[j] = a[i];
    }
    return ans;
}



### 动态规划解决最长上升子序列问题 对于最长上升子序列(Longest Increasing Subsequence, LIS),可以采用动态规划的方法来解决问题。以下是基于动态规划的核心思想以及其实现方式。 #### 方法一:O() 时间复杂度的动态规划算法 通过定义 `d[i]` 表示以第 `i` 个元素结尾的最长上升子序列长度,我们可以构建如下状态转移方程: 如果存在某个位置 `j` (其中 `j < i` 并且 `a[j] < a[i]`),则有: \[ d[i] = \max(d[i], d[j] + 1) \] 初始状态下,每个位置的最长上升子序列为 1,即 \( d[i] = 1 \),因为单个元素本身就是一个合法的上升子序列[^1]。 下面是该方法的具体实现代码: ```python def lis_dp_n2(arr): n = len(arr) if n == 0: return 0 d = [1] * n # 初始化为1 for i in range(1, n): for j in range(i): if arr[j] < arr[i]: d[i] = max(d[i], d[j] + 1) # 更新最大值 return max(d) # 测试用例 arr = [2, 7, 1, 5, 6, 4, 3, 8, 9] print(lis_dp_n2(arr)) # 输出应为5 ``` 此方法的时间复杂度为 O()。 --- #### 方法二:优化至 O(n log n) 的解决方案 为了进一步降低时间复杂度到 O(n log n),可以引入辅助数组 `g[]` 来记录当前已知的不同长度的上升子序列对应的最小末尾数值。具体来说,每次遇到一个新的数时,将其插入到合适的位置替换掉原有的较大值或者扩展新的长度[^4]。 下面是一个具体的 Python 实现版本: ```python import bisect def lis_optimized(arr): g = [] # 辅助数组用于保存不同长度下的最小可能结束值 for num in arr: pos = bisect.bisect_left(g, num) # 找到num应该放置的位置 if pos >= len(g): # 如果pos超出范围,则说明找到了更长的子序列 g.append(num) else: # 否则更新对应位置上的值 g[pos] = num return len(g) # 测试用例 arr = [2, 7, 1, 5, 6, 4, 3, 8, 9] print(lis_optimized(arr)) # 输出应为5 ``` 这种方法利用了二分查找技术,在保持最优解的同时显著减少了计算量。 --- ### 总结 上述两种方法分别展示了如何使用不同的策略去求解最长上升子序列问题。第一种方法简单易懂但效率较低;而第二种方法虽然逻辑稍显复杂,却极大地提高了运行速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值