HDU 3555 Bomb(数位DP模板啊两种形式)

原创 2015年07月09日 19:09:37

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555


Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
 

Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.

The input terminates by end of file marker.
 

Output
For each test case, output an integer indicating the final points of the power.
 

Sample Input
3 1 50 500
 

Sample Output
0 1 15
Hint
From 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499", so the answer is 15.
 

Author
fatboy_cw@WHU
 

Source


题意:

求0 到n的数中有多少个数字是含有‘49’的!

PS:

数位DP

//dp[i][j]:长度为i的数的第j种状态
//dp[i][0]:长度为i但是不包含49的方案数
//dp[i][1]:长度为i且不含49但是以9开头的数字的方案数
//dp[i][2]:长度为i且包含49的方案数

(转)状态转移如下
dp[i][0] = dp[i-1][0] * 10 - dp[i-1][1];  // not include 49  如果不含49且,在前面可以填上0-9 但是要减去dp[i-1][1] 因为4会和9构成49
dp[i][1] = dp[i-1][0];  // not include 49 but starts with 9  这个直接在不含49的数上填个9就行了
dp[i][2] = dp[i-1][2] * 10 + dp[i-1][1]; // include 49  已经含有49的数可以填0-9,或者9开头的填4

接着就是从高位开始统计

在统计到某一位的时候,加上 dp[i-1][2] * digit[i] 是显然对的,因为这一位可以填 0 - (digit[i]-1)
若这一位之前挨着49,那么加上 dp[i-1][0] * digit[i] 也是显然对的。
若这一位之前没有挨着49,但是digit[i]比4大,那么当这一位填4的时候,就得加上dp[i-1][1]

代码如下:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef __int64 LL;
LL dp[27][3];
int c[27];
//dp[i][j]:长度为i的数的第j种状态
//dp[i][0]:长度为i但是不包含49的方案数
//dp[i][1]:长度为i且不含49但是以9开头的数字的方案数
//dp[i][2]:长度为i且包含49的方案数
void init()
{
    memset(dp,0,sizeof(dp));
    dp[0][0] = 1;
    for(int i = 1; i <= 20; i++)
    {
        dp[i][0] = dp[i-1][0]*10-dp[i-1][1];
        dp[i][1] = dp[i-1][0]*1;
        dp[i][2] = dp[i-1][2]*10+dp[i-1][1];
    }
}

int cal(LL n)
{
    int k = 0;
    memset(c,0,sizeof(c));
    while(n)
    {
        c[++k] = n%10;
        n/=10;
    }
    c[k+1] = 0;
    return k;
}
void solve(int len, LL n)
{
    int flag = 0;//标记是否出现过49
    LL ans = 0;
    for(int i = len; i >= 1; i--)
    {
        ans+=c[i]*dp[i-1][2];
        if(flag)
        {
            ans+=c[i]*dp[i-1][0];
        }
        else if(c[i] > 4)
        {
            //这一位前面没有挨着49,但c[i]比4大,那么当这一位填4的时候,要加上dp[i-1][1]
            ans+=dp[i-1][1];
        }
        if(c[i+1]==4 && c[i]==9)
        {
            flag = 1;
        }
    }
    printf("%I64d\n",ans);
}
int main()
{
    int t;
    LL n;
    init();
    scanf("%d",&t);
    while(t--)
    {
        scanf("%I64d",&n);
        int len = cal(n+1);
        solve(len, n);
    }
    return 0;
}


DFS版

代码如下:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL __int64
LL n, dp[25][3];
//dp[i][j]:长度为i,状态为j
int digit[25];
//nstatus: 0:不含49, 1:不含49但末尾是4, 2 :含49
LL DFS(int pos, int status, int limit)
{
    if(pos <= 0) // 如果到了已经枚举了最后一位,并且在枚举的过程中有49序列出现
        return status==2;//注意是 ==
    if(!limit && dp[pos][status]!=-1)   //对于有限制的询问我们是不能够记忆化的
        return dp[pos][status];
    LL ans = 0;
    int End = limit?digit[pos]:9;   // 确定这一位的上限是多少
    for(int i = 0; i <= End; i++)   // 每一位有这么多的选择
    {
        int nstatus = status;       // 有点else s = statu 的意思

        if(status==0 && i==4)//高位不含49,并且末尾不是4 ,现在末尾添4返回1状态
            nstatus = 1;
        else if(status==1 && i!=4 && i!=9)//高位不含49,且末尾是4,现在末尾添加的不是4返回0状态
            nstatus = 0;
        else if(status==1 && i==9)//高位不含49,且末尾是4,现在末尾添加9返回2状态
            nstatus = 2;
        ans+=DFS(pos-1, nstatus, limit && i==End);
    }
    if(!limit)
        dp[pos][status]=ans;
    return ans;
}

int cal(LL x)
{
    int cnt = 0;
    while(x)
    {
        digit[++cnt] = x%10;
        x/=10;
    }
    digit[cnt+1] = 0;
    return cnt;
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(dp,-1,sizeof(dp));
        scanf("%I64d",&n);
        int len = cal(n);
        LL ans = DFS(len, 0, 1);
        printf("%I64d\n",ans);
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。vasttian

相关文章推荐

HDU3555:Bomb(数位DP)

Problem Description The counter-terrorists found a time bomb in the dust. But this time the terrori...

hdu3555 Bomb

Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) Total Su...

数位dp总结 之 从入门到模板

for(int i=le;i

数位dp总结 之 从入门到模板

来源:http://blog.csdn.net/wust_zzwh/article/details/52100392 基础篇 数位dp是一种计数用的dp,一般就是要统计一个区间[le,ri]内...

HDU 3555 Bomb (数位DP)

The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the ti...

数位dp模板

通常的数位dp可以写成如下形式: int dfs(int i, int s, bool e) { if (i==-1) return s==target_s; if (!e && ~f...

hdu4352(数位dp+状态压缩)

题意: 给出L和R找出在[L,R]中满足最长递增子序列长度等于K的个数。 题解: 状压想不到,看了kuangbin的才明白,1 #include #include #include #incl...

2016CCF-CCSP竞赛:第1题-虚拟机设计(共3题)

2016CCF-CCSP竞赛:第1题-虚拟机设计(共3题) 题目概览: 定义一种类似于汇编的语言X,只有8种基本指令。 Part1:用高级语言编写虚拟机,模拟运行X语言代码。(105分) Part...

HDU 3555 D - Bomb(数位dp)(模板)

这就是一道非常非常基础的数位的dp,就是求一个数是否包含49. 有两个做法,一个是当求到该数包含49的时候就continue(跳过),这样最后求出来的是不包含49的个数,用n减去sum就是答案。...

[ACM] hdu 3555 Bomb (数位DP,统计1-N中含有“49”的总数)

Bomb Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) Total S...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU 3555 Bomb(数位DP模板啊两种形式)
举报原因:
原因补充:

(最多只允许输入30个字)