HDU 3555 Bomb（数位DP模板啊两种形式）

2190人阅读 评论(1)

Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?

Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.

The input terminates by end of file marker.

Output
For each test case, output an integer indicating the final points of the power.

Sample Input
3
1
50
500

Sample Output
0
1
15

HintFrom 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499",
so the answer is 15. 

Author
fatboy_cw@WHU

Source

PS：

//dp[i][j]:长度为i的数的第j种状态
//dp[i][0]:长度为i但是不包含49的方案数
//dp[i][1]:长度为i且不含49但是以9开头的数字的方案数
//dp[i][2]:长度为i且包含49的方案数

(转)状态转移如下
dp[i][0] = dp[i-1][0] * 10 - dp[i-1][1];  // not include 49  如果不含49且，在前面可以填上0-9 但是要减去dp[i-1][1] 因为4会和9构成49
dp[i][1] = dp[i-1][0];  // not include 49 but starts with 9  这个直接在不含49的数上填个9就行了
dp[i][2] = dp[i-1][2] * 10 + dp[i-1][1]; // include 49  已经含有49的数可以填0-9，或者9开头的填4

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef __int64 LL;
LL dp[27][3];
int c[27];
//dp[i][j]:长度为i的数的第j种状态
//dp[i][0]:长度为i但是不包含49的方案数
//dp[i][1]:长度为i且不含49但是以9开头的数字的方案数
//dp[i][2]:长度为i且包含49的方案数
void init()
{
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
for(int i = 1; i <= 20; i++)
{
dp[i][0] = dp[i-1][0]*10-dp[i-1][1];
dp[i][1] = dp[i-1][0]*1;
dp[i][2] = dp[i-1][2]*10+dp[i-1][1];
}
}

int cal(LL n)
{
int k = 0;
memset(c,0,sizeof(c));
while(n)
{
c[++k] = n%10;
n/=10;
}
c[k+1] = 0;
return k;
}
void solve(int len, LL n)
{
int flag = 0;//标记是否出现过49
LL ans = 0;
for(int i = len; i >= 1; i--)
{
ans+=c[i]*dp[i-1][2];
if(flag)
{
ans+=c[i]*dp[i-1][0];
}
else if(c[i] > 4)
{
//这一位前面没有挨着49，但c[i]比4大，那么当这一位填4的时候，要加上dp[i-1][1]
ans+=dp[i-1][1];
}
if(c[i+1]==4 && c[i]==9)
{
flag = 1;
}
}
printf("%I64d\n",ans);
}
int main()
{
int t;
LL n;
init();
scanf("%d",&t);
while(t--)
{
scanf("%I64d",&n);
int len = cal(n+1);
solve(len, n);
}
return 0;
}


DFS版

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL __int64
LL n, dp[25][3];
//dp[i][j]:长度为i，状态为j
int digit[25];
//nstatus: 0：不含49, 1：不含49但末尾是4, 2 :含49
LL DFS(int pos, int status, int limit)
{
if(pos <= 0) // 如果到了已经枚举了最后一位，并且在枚举的过程中有49序列出现
return status==2;//注意是 ==
if(!limit && dp[pos][status]!=-1)   //对于有限制的询问我们是不能够记忆化的
return dp[pos][status];
LL ans = 0;
int End = limit?digit[pos]:9;   // 确定这一位的上限是多少
for(int i = 0; i <= End; i++)   // 每一位有这么多的选择
{
int nstatus = status;       // 有点else s = statu 的意思

if(status==0 && i==4)//高位不含49，并且末尾不是4 ，现在末尾添4返回1状态
nstatus = 1;
else if(status==1 && i!=4 && i!=9)//高位不含49，且末尾是4，现在末尾添加的不是4返回0状态
nstatus = 0;
else if(status==1 && i==9)//高位不含49，且末尾是4，现在末尾添加9返回2状态
nstatus = 2;
ans+=DFS(pos-1, nstatus, limit && i==End);
}
if(!limit)
dp[pos][status]=ans;
return ans;
}

int cal(LL x)
{
int cnt = 0;
while(x)
{
digit[++cnt] = x%10;
x/=10;
}
digit[cnt+1] = 0;
return cnt;
}

int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(dp,-1,sizeof(dp));
scanf("%I64d",&n);
int len = cal(n);
LL ans = DFS(len, 0, 1);
printf("%I64d\n",ans);
}
return 0;
}


3
1

Motto
• 你必须非常努力，
• 才能看起来毫不费力。
• tianyiming：2013/10/15 18:00
• wdnlwzd：2014/07/30 21:32
• vasttian： 2016/12/29 12:00
Vasttian
Blogs
个人资料
• 访问：1077369次
• 积分：21051
• 等级：
• 排名：第450名
• 原创：871篇
• 转载：72篇
• 译文：0篇
• 评论：253条