关闭
当前搜索:

Andrew Ng's deeplearning Course 第1课、第2课、第3课、第4课课后练习题/编程题

吴恩达深度学习deeplearning第一课课后测验及编程作业(含答案): http://download.csdn.net/download/u012867545/10171710 吴恩达深度学习deeplearning第二课课后测验及编程作业(含答案): http://download.csdn.net/download/u012867545/10172659...
阅读(175) 评论(0)

Andrew Ng's deeplearning Course4Week4 Special applications(特殊应用:人脸识别及神经风格转换)

一、人脸识别与验证 1.什么是人脸识别 人脸验证就是输入一个图片和姓名/ID,然后去数据库找这人的图像与当前图像进行匹配看看是不是同一个人。 而人脸识别是有一个K个人图像的数据库,而输入仅仅只有一个图像,你就得去数据库中找哪个人最接近输入的这个图像,识别出来(或者没有这个人)。 2.one-shot学习(一次学习) 因为人脸识别只能通过一个样本来学习,因此我们需要解决的就...
阅读(206) 评论(0)

Andrew Ng's deeplearning Course4Week3 Object detection(目标检测)

一、目标定位与特征点检测 1.目标定位 由上图可知,之前我们学习的是图片分类的问题,而图片分类的定位问题就是建立在图片分类的基础上的,而目标的检测又是在图片分类定位问题的基础上实现的。 目标的定位的输入就是图片,经过一系列CONV,pool池化后最后输出一个形似如下的softmax,包含有4个值,包括目标的中心坐标(bx,by),目标的边界大小bh,bw。 该如何定...
阅读(98) 评论(0)

Andrew Ng's deeplearning Course4Week2 Deep convolutional models(深度卷积网络:实例探究)

一、经典网络 1.LeNet-5 LeNet-5的结构为conv->pool->conv->pool->fc->fc->output。在LeCun写这篇论文的时候,这里的激活函数采用的是sigmoid和tanh,不过现在也可以使用ReLU。还有一个优点是参数相对来说不多。 2.Alex-net  AlexNet的结构为conv->pool->conv->pool->conv...
阅读(91) 评论(0)

Andrew Ng's deeplearning Course4Week1 Convolutional Neural Networks(卷积神经网络)

一、计算机视觉 深度学习帮助计算机视觉很好的发展,如无人驾驶车识别路上的行人和车辆,人脸识别,艺术风格迁移。 如上图所示,深度学习在大图像上有一个问题,那就是维度。之前64*64*3的维度才12288,但是如果是1000*1000像素的大图片,那么维度就是3million,假设第一层有1000个隐藏单元,那么就是3billion。输入维度太大,在参数如此大量的情况下,难以获取足...
阅读(107) 评论(0)

Andrew Ng's deeplearning Course3Week2 ML Strategy2(结构化机器学习)

一、误差分析 1.执行误差分析 如何执行误差分析呢? 我们可以将dev和test集里的错误标记进行人工整理,画张表,最后统计出各个错误的原因所占的比例,这花不了太长时间,但对改善效果可能会有很大帮助,毕竟去改善占比61%的错误总比花大量时间去解决占比8%的错误要来得高效。 2.清除标记错误的例子 有些例子并不是分类分错了,而只是因为某种原因把标记标错了,我们要根据这类错误所占的百...
阅读(53) 评论(0)

Andrew Ng's deeplearning Course3Week1 ML Strategy(结构化机器学习)

一、机器学习的策略 什么是机器学习策略,机器学习的策略就是一些分析机器学习问题的方法。 当你的模型精准度达到90%时,还不够好,你想让它更好,你可以选择收集更多的数据,尝试更大或更小的网络,尝试dropout,尝试调整各种参数,你的选择太多了,但你并不知道调整过后效果怎么样,可能花费几个月时间但是效果并没长进,有什么应对办法嘛,那就是正交化。 正交化,对于那些知道正交化的人来说,他们...
阅读(59) 评论(0)

Andrew Ng's deeplearning Course2Week3 Hyperparameter tuning, Batch Normalization and Frameworks

一、超参数调试 1.超参数的选择次序 超参数的重要程度:1.α 2.β、hidden units、mini-batch size 3.layers、learning rate decay 4.β1、β2、ε(通常设为0.9,0.999,10^-8) 2.超参数的选取(随机取值,精确搜索) 假设我们的超参数1为学习率α,超参数2为ε,明显α的重要程度要大于ε,如果像上图左边的...
阅读(85) 评论(0)

Andrew Ng's deeplearning Course2Week2 Optimization algorithms(优化算法)

优化算法能帮助我们快速训练模型 一、mini-batch梯度下降法 1.batch vs mini-batch 向量化能让你相对快速的处理m个样本,但是当m比较大时,例如5000000,速度可能就会比较慢了。因此,我们将m个样本切分成一块一块的,这就是mini-batch,而原先不切分的形式就是batch。X{t},Y{t}:我们用X{t}和Y{t}分别表示X和Y的第t块样本集。 2....
阅读(55) 评论(0)

Andrew Ng's deeplearning Course2Week1 Practical aspects of Deep Learning(深层学习的实用层面)

1 深度学习的实用层面 1.1 基础 1.1.1 深度学习应用简述 正如上图所说:深度学习的应用是一个高度迭代的过程,对于隐藏层的数量,隐藏单元数,学习率,激活函数这些该怎么选,我们其实心里并没有数,我们只有在一次次的选择和迭代过程中才能不断找到更好的,因此深度学习是一个高度迭代的过程。 1.1.2 训练/开发/测试集的选择 高质量的训练数据集、验证集和测试集可以有效的提高循环的...
阅读(54) 评论(2)
41条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:5603次
    • 积分:441
    • 等级:
    • 排名:千里之外
    • 原创:40篇
    • 转载:1篇
    • 译文:0篇
    • 评论:4条
    文章分类
    最新评论