关闭

弹性力学学习 笔记

90人阅读 评论(0) 收藏 举报

前言

                        

一、矢量积 (叉积)结果还是矢量  标量积(点积)得到的是一个标量


二、三重积

三个矢量的点积和叉积可以得到几种有意义的乘积形式 1.  (U●V)●W、2. U●(VxW)、3. Ux(VxW)

1) 通常点积 、叉积不适合结合律   (1、3)

2)2.称为三重标量积或框积,点积与叉积可以互换而不影响其结果

3)3.称为三重矢量积, Ux(VxW) = (UxV)xW = (UW)V —(UV)W

三、标量场和矢量场

标量值是由空间中一点的位置决定,如温度。表示的是三维空间的一个面

流体粒子的速度V  是矢量场的一个例子,它依赖于位置和方向。

1)标量场的梯度

2)矢量的散度 :算子与一个矢量的标量积(点积)

3)矢量的旋度 :算子与矢量的矢量积(叉积)

4)求和约定:只要一个下标在一个表达式或方程的一项中出现两次,就理解为这个下标的值是从1到3进行求和。重复的下标称之为哑标(因为采用哪个特别的字母并不重要)。



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:130次
    • 积分:20
    • 等级:
    • 排名:千里之外
    • 原创:2篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章存档