关闭

优化算法综述

287人阅读 评论(0) 收藏 举报
分类:
0
0
查看评论

梯度下降优化算法综述

梯度下降优化算法综述   该文翻译自An overview of gradient descent optimization algorithms。   总所周知,梯度下降算法是机器学习中使用非常广泛的优化算法,也是众多机器学习算法中最常用的优化方法。几乎当前每一个先进的(state-of-the-...
  • heyongluoyao8
  • heyongluoyao8
  • 2016-09-09 00:21
  • 34908

重磅 | 2017年深度学习优化算法研究亮点最新综述火热出炉

翻译 | AI科技大本营(微信ID:rgznai100) 梯度下降算法是机器学习中使用非常广泛的优化算法,也是众多机器学习算法中最常用的优化方法。几乎当前每一个先进的(state-of-the-art)机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现。但是,它...
  • dQCFKyQDXYm3F8rB0
  • dQCFKyQDXYm3F8rB0
  • 2017-12-05 00:00
  • 172

优化算法综述

  • u012871493
  • u012871493
  • 2016-08-29 10:37
  • 121

SVM综述系列

(一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC ...
  • Together_CZ
  • Together_CZ
  • 2017-04-24 20:38
  • 396

梯度下降优化算法综述(翻译)

原文链接:http://sebastianruder.com/optimizing-gradient-descent 博文地址: 梯度下降是最流行的优化算法之一并且目前为止是优化神经网络最常见的算法。与此同时,每一个先进的深度学习库都包含各种算法实现的梯度下降(比如lasagne's,&...
  • hellonlp
  • hellonlp
  • 2016-03-24 22:40
  • 4595

神经网络优化算法综述

神经网络的训练有不同算法,本文将简要介绍常见的训练算法:adagrad、momentum、nag、rmsprop。同时简要介绍如何进行算法检查。
  • Young_Gy
  • Young_Gy
  • 2017-05-23 00:15
  • 1314

梯度下降优化算法综述(转载)

原文地址:http://www.cnblogs.com/ranjiewen/p/5938944.html对梯度下降进行详细解释,以及总结不同的梯度下降优化算法的优劣,可以作为参考。上两张图,简直不能更直观:直接跳转原文地址吧!
  • u011995719
  • u011995719
  • 2017-07-26 17:04
  • 187

优化器——梯度下降优化算法综述

如何选择SGD优化器 http://www.cnblogs.com/ranjiewen/p/5938944.html   如果你的数据特征是稀疏的,那么你最好使用自适应学习速率SGD优化方法(Adagrad、Adadelta、RMSprop与Adam),因为你不需要在迭代过程中对学习速率进行人工...
  • s1162276945
  • s1162276945
  • 2017-09-22 20:50
  • 74

随机梯度下降中的优化算法

1、动量法 加入历史梯度累积,作为下降方向。 2、Nesterov 加速梯度法 在之前的累积梯度上前进一步,根据当前情况进行修正。相较于动量法,增加了当前情况的修正。动量法容易在梯度的来回震荡中抵消一部分动量作用,Nesterov 加速梯度法有效改进了不足之处。 3、Adagr...
  • u013453936
  • u013453936
  • 2018-01-08 16:27
  • 46

最全的机器学习中的优化算法介绍

在机器学习中,有很多的问题并没有解析形式的解,或者有解析形式的解但是计算量很大(譬如,超定问题的最小二乘解),对于此类问题,通常我们会选择采用一种迭代的优化方式进行求解。   这些常用的优化算法包括:梯度下降法(Gradient Descent),共轭梯度法(Conjugate Gradient)...
  • qsczse943062710
  • qsczse943062710
  • 2017-08-06 12:57
  • 1734
    个人资料
    • 访问:59452次
    • 积分:1329
    • 等级:
    • 排名:千里之外
    • 原创:96篇
    • 转载:25篇
    • 译文:2篇
    • 评论:16条
    最新评论