关闭

理解缓慢变化维(Slowly Changing Dimension)

247人阅读 评论(0) 收藏 举报
分类:

“缓慢变化维度”是在构建数据仓库时比较常见的一种情况。简而言之它适用于这种情况——数据记录会随着时间而发生变化


举个例子:

Larry是S公司的一个职员。他居住在上海,于是查找用户表有以下记录:

Record ID Name Locate
1001  Larry Shanghai


在一段时间以后,Larry被派遣到了北京的分公司工作。那么S公司如何更新员工信息表以反映出这次变化?这个就是缓慢变化维的问题所在。

通常有三种方法解决该问题:

Type 1: 替换原始记录

Record ID Name Locate
1001  Larry Beijing

该方法优点是简单方便;缺点是无法追溯历史数据。

Type 2: 插入一条新记录

Record ID Name Locate
1001 Larry Shanghai
1002 Larry Beijing

该方法的优点是保留了全部的历史记录;缺点是使得数据表记录飞涨,可能导致影响查询效率。


Type 3: 更新原始表结构

Record ID Name Original Locate Current Locate Effective Date
1001 Larry Shanghai Beijing 2014-01-01

该方法既可以反应历史记录,也可以避免成倍的数据增长。但是缺点是适用场景非常少,仅能反映出部分历史记录。




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:28460次
    • 积分:905
    • 等级:
    • 排名:千里之外
    • 原创:59篇
    • 转载:14篇
    • 译文:4篇
    • 评论:0条