理解缓慢变化维(Slowly Changing Dimension)

原创 2015年07月09日 00:13:54

“缓慢变化维度”是在构建数据仓库时比较常见的一种情况。简而言之它适用于这种情况——数据记录会随着时间而发生变化


举个例子:

Larry是S公司的一个职员。他居住在上海,于是查找用户表有以下记录:

Record ID Name Locate
1001  Larry Shanghai


在一段时间以后,Larry被派遣到了北京的分公司工作。那么S公司如何更新员工信息表以反映出这次变化?这个就是缓慢变化维的问题所在。

通常有三种方法解决该问题:

Type 1: 替换原始记录

Record ID Name Locate
1001  Larry Beijing

该方法优点是简单方便;缺点是无法追溯历史数据。

Type 2: 插入一条新记录

Record ID Name Locate
1001 Larry Shanghai
1002 Larry Beijing

该方法的优点是保留了全部的历史记录;缺点是使得数据表记录飞涨,可能导致影响查询效率。


Type 3: 更新原始表结构

Record ID Name Original Locate Current Locate Effective Date
1001 Larry Shanghai Beijing 2014-01-01

该方法既可以反应历史记录,也可以避免成倍的数据增长。但是缺点是适用场景非常少,仅能反映出部分历史记录。




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

缓慢渐变维度 (Slowly Changing Dimension) 常见的三种类型及原型设计

目录(?)[-] 缓慢渐变类型一 Type 1 SCD缓慢渐变类型二 Type 2 SCD 为什么使用代理键有什么好处 缓慢渐变类型三 Type 3 SCD总结其它的相关文章PS 说明 在从...

[数据仓库--ETL]渐变维度(Slowly Changing Dimension)及其处理方法

渐变维度(Slowly Changing Dimension)及其处理方法 要讨论什么是渐变维度,或者缓慢变化维度,就要先说说什么是维度。虽然经常挂在嘴边的词,但解释起来确实有难度,更不要说给出...

Dimension——缓慢变化维-SCD

DW

数据仓库缓慢变化维(Slow changing demenison) 的实现方案

目录   缓慢变化维解决方案 1   参考文档:Wikipedia 2   一.新数据覆盖旧数据 3   二.保存多条记录,并添加字段加以区分 3   三.不同字段保存不同值 4...

缓慢变化维

  • 2014-07-13 01:27
  • 519KB
  • 下载

Slowly Changing Dimensions

Slowly Changing Dimensions (SCDs) are dimensions that have data that slowly changes. The SCD editor ...

Implementing Slowly Changing Dimensions

A well-designed data warehouse accommodates change Handling changes to dimensional data across time...

How to handle Slowly Changing Dimensions (SCDs) in data model design?

There are multiple methods to handle the slowly changing dimensions. Which technique to use depends ...

缓慢变化维

维度建模的数据仓库中,有一个概念叫Slowly Changing Dimensions,中文一般翻译成“缓慢变化维”,经常被简写为SCD。缓慢变化维的提出是因为在现实世界中,维度的属性并不是静态的,它...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)