样本采集过程中需要注意的问题

原创 2013年12月03日 20:34:55

项目:客流量统计系统

样本采集:

目标:人头

摄像头架设位置:垂直

样本采样:包括头部边缘的人头作为检测目标

样本采集需要注意的问题:

  • 样本的大小:需要按照一定的比例(1:1)采集,可以使用ps设置扣取目标并缩放到统一尺度下
  • 样本的基准参考点:尽量保持人头的头顶居于图片的中心位置,以防止图片过于偏于某个方向而引入较多的噪声

目标:头和肩膀

摄像机架设位置:垂直

样本采样部位:包括完整的人头和部分肩膀信息

样本采集需要注意的问题:

  • 样本的大下:按照一定的比例(1:1)采集,(头和肩膀的采样形状会随着人体的不同姿势而发生改变,如果用矩形框,人在水平站立和倾斜45度时采样的矩形框比例不同,为了统一标准,选取正方形)
  • 样本的基准参考点:尽量将人头摆放着中间位置,并按照人头的大小将采样区域扩大为人头的1.5-2倍作为样本。(原因:如果选取包含人体的全部肩部和头部信息,会随着人体的旋转,采样的大下发生变化,可能不利于特征的分类)

样本训练:

分类器:svm

样本比例:如果使用opencv自带的svm进行特征训练,对于二分类问题,正负样本比例接近1:1,若正负样本个数差异较大,听朋友说可以通过加权svm来控制分类器

样本数量:在客流统计系统中,正负样本分别大于4000张

样本更新:在使用svm训练出分类器后,需要用测试样本对分类器进行测试,分别将误检和虚检的目标添加到正负样本中,更新样本(主要是更新负样本,正样本主要依靠人工扣取更新),直至正负样本分别收敛为止。

svm系数调整:对于线性分类器,参数C值对svm的分类结果有较大影响,可以通过调节c值获取较好的分类器,同样训练的迭代次数同样对此有影响,常见的博客中用到的是100次迭代。但是在使用过程中,用到了1E5--1E7有较好的效果,说明迭代次数较大时,分类器性能较好。

 

 

不均匀正负样本分布下的机器学习

不均匀正负样本分布下的机器学习 @机器学习那些事儿 发起的讨论, 2014-11-15 @好东西传送门 整理于 2014-12-09 39 条精选讨论(选自165条原始评论和转发) 机...
  • sp_programmer
  • sp_programmer
  • 2015年08月28日 09:10
  • 2832

如何解决机器学习中数据不平衡问题

这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一...
  • Losteng
  • Losteng
  • 2016年03月21日 15:44
  • 7907

正负样本不平衡的解决方法

8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset by Jason Brownlee on Au...
  • u012556077
  • u012556077
  • 2015年08月24日 23:00
  • 2913

SVM样本训练步骤

SVM样本训练步骤 转自:http://blog.csdn.net/xw20084898/article/details/21389885 1、引言 近期在做飞形体目标识别的研究,需要做SV...
  • zkl99999
  • zkl99999
  • 2015年06月27日 09:21
  • 3773

样本非平衡问题

问题定义: 正负样本比例为100:1 甚至1000:1,需要在分布如此不均匀的数据集中学习到有用信息。 危害: 造成分类器在多数类精度较高,少数类的分类精度很低。以最大分类精度为目标,导...
  • z88508468
  • z88508468
  • 2016年03月17日 09:51
  • 1598

分类器的相关概念

昨天,@人民网发了一条八卦微博,盘点“雨神”(@萧敬腾)是如何炼成的。微博称,网友统计发现,在@萧敬腾 近年12次主要行程中,有10次他的“现身”让当地下起了雨,下雨的概率为83.3%。 图1 ...
  • xyilu
  • xyilu
  • 2013年08月15日 21:02
  • 3918

HOG特征+SVM训练过程

言归正传,实验所用行人库:INRIAPerson。训练过程如下: 1、选定正负样本:正样本、行人库中正样本大小为96x160,比我们需要的64x128窗口要大,是因为每一个边有一个padding,1...
  • yangleo1987
  • yangleo1987
  • 2016年11月16日 13:22
  • 2938

opencv haartraining 分析二:每级stage正负样本的获取

http://blog.sina.com.cn/s/blog_75e063c10100za53.html   函数  poscount = icvGetHaarTrainingDataFromV...
  • xgwdy06
  • xgwdy06
  • 2013年12月31日 20:03
  • 833

【机器学习】【神经网络与深度学习】不均匀正负样本分布下的机器学习 《讨论集》

39 条精选讨论(选自165条原始评论和转发)  机器学习那些事儿   2014-11-15 17:48 工业界机器学习典型问题: 正负样本分布极不均匀(通常@老师木 @李沐M @...
  • LG1259156776
  • LG1259156776
  • 2016年09月21日 14:07
  • 6048

正负样本不平衡处理方法总结

1, Bootstrapping,hard negative mining 最原始的一种方法,主要使用在传统的机器学习方法中。 比如,训练cascade类型分类模型的时候,可以将每一级分类错误的样...
  • qq_14845119
  • qq_14845119
  • 2017年12月29日 12:08
  • 138
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:样本采集过程中需要注意的问题
举报原因:
原因补充:

(最多只允许输入30个字)